
Technical Report ITL-96-1
May 1996

US Army Corps
of Engineers
Waterways Experiment
Station

Object Database Systems: A Tutorial
by Kofi Apenyo

DTXG QUALITY IMSmJSE® &

Approved For Public Release; Distribution Is Unlimited

1
Prepared for Headquarters, U.S. Army Corps of Engineers

DISCLAIMS! NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.

© PRINTED ON RECYCLED PAPER

Technical Report ITL-96-1
May 1996

Object Database Systems: A Tutorial
by Kofi Apenyo

U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report
Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

US Army Corps
of Engineers
Waterways Experiment
Station

POR WOMATVM OONTACT:

PUBLIC AFFAIRS OFFICE
U.S. ARMY ENGINEER
WATERWAYS EXPERHENT STATION

HALLS FERRY ROAD
VtCKSBURO, MISaSaPPI J8190-61W

PHONE: (601)04-2502

0FTBBBNATm-Z7m*f

Waterways Experiment Station Cataloging-in-Publication Data

Apenyo, Kofi.
Object database systems : a tutorial / by Kofi Apenyo; prepared for U.S. Army

Corps of Engineers.
126 p.: ill.; 28 cm. — (Technical report; ITL-96-1)
Includes bibliographic references.
1. Object-oriented programming (Computer science) 2. Object-oriented databases.

3. CAD/CAM systems. I. United States. Army. Corps of Engineers. II. U.S. Army
Engineer Waterways Experiment Station. III. Information Technology Laboratory (U.S.
Army Engineer Waterways Experiment Station) IV. Title. V. Series: Technical report
(U.S. Army Engineer Waterways Experiment Station); ITL-96-1.
TA7 W34 no.lTL-96-1

Contents

Preface &

1. Introduction 9

1.1 Introduction 9

1.2 Object n
1.2.1 Structure H
1.2.2 Behavior H
1.2.3 Interaction 13
1.2.4 Definition 16
1.2.5 Object identifier 16

1.3 Class 17
1.4 Analogy with Traditional Data Management Terms ... 18

2. Object Structure 20

2.1 Structural Abstraction 20
2.1.1 Composite instance variable 20
2.1.2 Object state 22
2.1.3 Class, instance variables, and

object states 22
2.1.4 Constraints 23
2.1.5 Class definition 23

2.2 Abstract Data Type 24
2.3 Instance Variable Encapsulation 25
2.4 Class Hierarchy and "IS A" 26

2.4.1 Generalization or superclass
construction 28

2.4.2 Specialization or subclass construction ... 28
2.5 Structural Inheritance 29
2.6 Instance Variable Overriding 33

3. Object Method 37

3.1 Behavior 37
3.2 Kinds of Methods 38

3.2.1 Instance method 38
3.2.2 Class method 38

3.3 Inheritance of Methods 38
3.4 Method Inheritance Algorithm 41
3.5 Method Overriding 42
3.6 Polymorphism and Dynamic Binding 44
3.7 Message 45
3.8 A Perception of Instance Variables,

Instances and Methods 55
3.9 Protocol 56
3.10 Encapsulation 57

4. Object Interactions 60

4.1 Inheritance Relationship 60
4.2 Interclass Relationship 66

4.2.1 Connectivity 68
4.2.2 Membership 69
4.2.3 Representation of interclass

relationships 71
4.2.4 Mapping an ER model to an object diagram ... 74
4.2.5 Instance diagram 76

4.2.5.1 Case 1 - Instance diagram for
l:n relationship 77

4.2.5.2 Case 2 - Instance diagram for
m:n relationship 83

4.3 Aggregation Relationship 85

5. Object Model 91

5.1 Representation of Classes in the Object Model ... 91
5.2 Representation of Instance Variables in the

Object Model 91
5.3 Representation of Methods in the Object Model ... 92
5.4 Representation of Inheritance Relationships in

the Object Model 92
5.5 Representation of Interclass Relationships in

the Object Model 92
5.6 Representation of Aggregation Relationships in

the Object Model 92
5.7 Object Model Example 92
5.8 Conclusion 94

References 96

Appendix A: Gemstone User Guide 97

Appendix B: Inheritance Relationship
Implementation 102

Appendix C: Interclass Relationship
Implementation 109

Appendix D: Course Outline 124

SF 298

List of Figures

Figure 1. An EMPLOYEE table 12

Figure 2. 00 STUDENT-COURSE relationship 14

Figure 3. Student with relationships to courses 14

4

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

ER STUDENT-COURSE relationship 14

An object and an entity 16

STUDENT objects Of STUDENT class 17

Representation of a STUDENT class 18

A STUDENT class 20

STUDENT, EMPLOYEE, and COMPANY classes 21

Referential object sharing 22

An object state of STUDENT class 22

Tabular representation of class 23

INTEGER class 24

MS WINDOW class 26

EMPLOYEE class hierarchy . . 27

A NUMBER class hierarchy 27

An MS Windows class hierarchy 28

Inheritance in EMPLOYEE class hierarchy ... 30

Specialization in EMPLOYEE class
hierarchy 31

The OBJECT superclass 32

Inheritance in a Windows class
hierarchy 33

School/High-School class hierarchy 34

EMPLOYEE class 37

EMPLOYEE class hierarchy and method
inheritance 39

A NUMBER class hierarchy 3 9

A Windows class hierarchy 41

Windows ACCESSORIES class hierarchy 41

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41.

Figure 42.

Figure 43.

Figure 44.

Figure 45.

Figure 46.

Figure 47.

Figure 48.

Figure 49.

Method lookup in EMPLOYEE class
hierarchy 42

Overriding in EMPLOYEE class hierarchy ... 43

Overriding in MS Windows 44

Tabular structure of EMPLOYEE class 55

Subset of the Gemstone class hierarchy ... 64

Set of employees 65

Set of OIDs of Physics students 66

STUDENT class with relationship to
DEPARTMENT 68

DEPARTMENT class with relationship to
STUDENT . 68

A student object belongs to one
department 69

A department object has many students 69

STUDENT class with optional membership
in a relationship 70

A DEPARTMENT with mandatory membership
in a relationship 71

STUDENT-DEPARTMENT relationship 71

Instance variable representation of
DEPARTMENT 71

An object state of STUDENT 72

Instance variable representation of
STUDENT 73

An object state of DEPARTMENT 73

l:n ER diagram of entity types P and Q ... 74

Object diagram of classes P and Q 75

m:n ER diagram of entity types P and Q ... 76

Object diagram of classes P, Q, and R 76

6

Figure 50. DEPARTMENT-STUDENT relationship • • 77

Figure 51. DEPARTMENT-STUDENT instance diagram 79

Figure 52. Tabular display of STUDENT class 81

Figure 53. Tabular display of DEPARTMENT class 82

Figure 54. DEPARTMENT with a many-relationship 83

Figure 55. m:n STUDENT-COURSE relationship 84

Figure 56. STUDENT-COURSE instance diagram 85

Figure 57. A composite instance variable 86

Figure 58. STUDENT-ADDRESS relationship 86

Figure 59. Connectivity of STUDENT-ADDRESS
relationship 88

Figure 60. Instance diagram of STUDENT-ADDRESS
relationship 88

Figure 61. ADDRESS-STUDENT relationship 89

Figure 62. Object model of an auto MFG company 94

Figure Bl. EMPLOYEE class hierarchy 102

Figure Cl. Object model for an education
database 11°

List of Tables

Table 1. Data management terms 19

Table 2. An example protocol 56

Preface

This report presents research performed by Dr. Kofi
Apenyo of Jackson State University, Jackson, MS, under the
supervision of Dr. Windell Ingram, Chief, Computer Science
Division, Information Technology Laboratory (ITL) , U.S. Army-
Engineer Waterways Experiment Station (WES) pursuant to an
assignment agreement between Jackson State University and
WES for the period 16 May 1995 to 11 August 1995.
Dr. N. Radhakrishnan was Director of ITL during preparation
of this report. The primary task was to research and
introduce the emerging area of object database technology to
selected ITL computer scientists. This tutorial is the
result of that effort. The tutorial was written and, for
ready comprehension, illustrated with numerous examples from
the familiar object-oriented Microsoft Windows environment.
The tutorial was presented in a 6-hour instructor-led course
which was spread over 4 days to accommodate course
assignments. The lectures were accompanied by live computer
demonstrations on the Gemstone object database management
system (DBMS) at Jackson State University. Gemstone was
made available to course participants, who were encouraged
to implement their assignments on the object DBMS.

During the preparation and publication of this report,
Director of WES was Dr. Robert W. Whalin. Commander was
COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.

1. INTRODUCTION

1.1 Introduction

The object-oriented (00) paradigm was first introduced in
the design of advanced programming languages in
environments such as Smalltalk (Goldberg and Robson 1983).
This occurred at a time when the relational approach had a
stranglehold on data management. Even at its zenith it was
becoming increasingly clear that relational systems could
not handle certain problems properly. These problems were
to be found in complex business modeling and in the
technology areas such as computer-integrated manufacturing,
information retrieval, CAD/CAM, CASE, and GIS. Elsewhere
programming experience had shown that 00 concepts would
readily solve many of these problems. However, lack of
persistence is a major drawback for using a programming
language as the sole weapon for solving large problems.
Accordingly, some of the more successful, well-established
RDBMSs proceeded to make extensions to include the 00
paradigm. Meanwhile, following the lead of Gemstone,
database products such as Itasca, 02, Objectivity/DB,

ObjectStore, ONTOS, Poet, STATICE, and Versant took the
approach of designing an architecture to directly support
the 00 paradigm. This pure 00 approach to data management
is the topic of this tutorial.

The 00 paradigm is based on five fundamental concepts
(Bertino and Martino 1991):

1) Each real-world entity is modeled by an object. Each
object is associated with a unique identifier.

2) Each object has a set of instance variables and
methods; the value of an instance variable can be an object
or a set of objects. This characteristic permits arbitrary
complex objects to be defined as an aggregation of other
objects. The set of instance variables of an object and
the set of methods represent the object structure and
behavior, respectively.

3) The instance variable values represent the object's
state. This state is accessed or modified by sending
messages to the object to invoke the corresponding methods.

4) Objects sharing the same structure and behavior are
grouped into classes. A class represents a template for a
set of similar objects. Each object is an instance of some
class.

5) A class can be defined as a specialization of one or
more classes. A class defined as a specialization is
called a subclass and inherits instance variables and
methods from its superclass(es).

The 00 approach takes a fundamental departure from
traditional data management. It not only proposes a novel
notion of entity, the data management metaphor for the
chemist's molecule, but it permeates numerous technical
data management areas and, indeed, the very philosophy of
the data processing industry. For example, traditional
data management is confined to the centralization of data
and access to that data is handled by application programs,
a separate function. By contrast, an 00 DBA's primary task
is not limited to modeling and design only, but includes
programming as well. Thus some of the programmer's task is
assumed by the DBA in an 00 database system, thereby
simplifying the programmer's task. Another simplifying
feature of application programming is that 00 systems
provide code reusability. Reusability, a prize of 00
systems, is achieved through inheritance and serves to
reduce the amount of programming. Thirdly, the 00 paradigm
avoids the impedance mismatch that exists between data and
program in traditional data management by advocating a
rapprochement between the database and the programming
language to yield a seamless application interface. In
addition to increased programmer productivity, performance
is greatly enhanced over comparable scenarios in relational
systems. However, a price is exacted for these benefits in
the increased complexity of the DBA's modeling task.

The study of object orientation in database systems may be
pursued by examining three building blocks: structure,
behavior, and interaction of objects. Structure and
interaction come from database concepts while behavior is
specified through programming. Database concepts provide
persistent data and programming languages contribute
expressive power. Chapter 1 introduces the concept of an
object; Chapter 2 is on the structural abstraction of an
object; Chapter 3 concerns behavioral abstraction; Chapter
4 discusses object interaction; and Chapter 5 proposes an

10

object model. For the interested reader, a user guide to
the Gemstone object DBMS at Jackson State University is
provided in Appendix A. Appendix B contains a program that
illustrates the implementation of an object model which has
inheritance relationships only. Appendix C is a program
that demonstrates the implementation of an object model
which has inheritance as well as interclass relationships.
Both implementations are on the Gemstone object DBMS.
Appendix D gives the outline of a course which presented
this tutorial at the Waterways Experiment Station,
Vicksburg, MS.

1.2 Obj ect

1.2.1 Structure

An entity is something about which an enterprise stores
information. In 00 systems, each real-world entity may be
modeled by an object. An object is more complex than an
entity as the term is used in the entity-relationship
model. Like an entity, an object has structure. The
structure simply provides descriptive information about the
object. For example,

i. an EMPLOYEE object is described by SS#, NAME, SALARY;

ii. a geographic LINE object is described by LINE_ID,
START_N0DE, END_NODE, DIRECTION, and LENGTH;

iii. a geographic POLYGON is described by POLYGON_ID,
P0LYG0N_TYPE, AREA, and PERIMETER.

iv. an online Word document is described by TITLE,
TITLEBAR,

SCROLLBAR, BORDERWIDTH, and SIZE.

During modeling, descriptive information that is relevant
to the needs of the enterprise is abstracted to specify the
structure of an object.

1.2.2 Behavior

In addition to structure, an object may also have one or
more algorithms that are applicable to the object. For
example, a university enterprise may wish to manipulate

11

STUDENT objects for calculating a course GPA using an
algorithm

course_GPA = (SA*4.0 + SB*3.0 + Sc*2.0 + SD*1.0 + SP*0.0)/

(SA + SB + Sc + SD + SF)

where SA is the number of students with grade A, and so on.

In traditional environments, the algorithm is written as a
program that is separate from the data. In OO systems, the
algorithm is part and parcel of the object. Thus the
second characteristic of an object is that it possesses
behavior that may be invoked for information of interest to
the enterprise.

A fundamental and very significant difference to data
access between the 00 paradigm and traditional data
management is given in the following example. Consider the
EMPLOYEE table. Figure 1, in a relational database:
EMPLOYEE

SS# NAME SALARY DNAME

777182278 Smith 51000 Applications
179113420 Jackson 62000 DBA

Figure 1. An EMPLOYEE table

The SQL query to retrieve the SALARY of Smith is

select SALARY
from EMPLOYEE
where NAME = 'Smith';

Note that in traditional data management, the EMPLOYEE
relation is separate from the query or application program.
Furthermore, the user is required to know the exact names,
such as SALARY and NAME, of attributes of the relation. By
contrast, if we have an EMPLOYEE object Smith in an 00
database, the query would be of the form

Smith SALARY

that is, specify the Smith object, then invoke the
algorithm SALARY. Here, SALARY is the name of an algorithm
for retrieving the value of salary. The SALARY algorithm

12

is contained in the Smith object. The user does not have
to know the attribute names of the object.

In object orientation, application programming is
simplified since it often consists of invoking and
assembling predefined semantic operations. This is one way
in which programmer productivity is improved. Both the
value of salary and the algorithm used to retrieve it are
embedded in the object itself. This is precisely how the
Microsoft GUI, Windows, an 00 implementation, operates:

select an object, then select an operation

For example, to delete a Word document text,

select the text, then click the cut command

Compared to the SQL example, the data processing
philosophy in 00 systems is more natural and in line with
other human experiences. For example, when you start a car
you identify an object, a key, then you invoke an operation
by cranking. To accelerate, you identify the gas pedal and
depress it. In each of these the driver does not need to
know the underlying mechanism. By contrast, the approach
of SQL and traditional data management in general would
require knowledge of the internal working of a car. In 00
data management, we have persistent data objects to which
we may apply named operations.

1.2.3 Interaction

A third characteristic of an object is that it is able to
interact with other objects and even with itself. So, for
example, a STUDENT object may interact with a COURSE object
in that the student takes courses. The relationship,
Figure 2, is as much a part of the object as its structure
and behavior.

13

o o

I course
| object |

X X
Student object

Figure 2. 00 STUDENT-COURSE relationship

By contrast, an entity may be involved in relationships
which are "external" to it. Figure 3 shows such an
occurrence diagram.

| |COURSE entity

J L
 I I COURSE entity

A J L
STUDENT entity

Figure 3. Student with relationships to courses

The corresponding entity-relationship (ER) diagram is given
in Figure 4.

STUDENT . takes ._ I COURSE

Figure 4. ER STUDENT-COURSE relationship

Unlike in object orientation, the interacting "objects" in
the ER and relational models are stored separately, only to

14

be joined later to respond to queries. Joining exacts a
high cost in performance.

15

1.2.4 Definition

With the preceding background we define an object as:

An object is an abstract structural representation of
a real-world entity that has certain embedded properties

for data manipulation and the ability to interact with
other objects and itself.

The diagram in Figure 5 illustrates the definition and
contrasts it with the more familiar notion of entity.

I I

structure:SS#,NAME,
SALARY

structure:SS#,NAME,
SALARY, DNAME

algorithm: salary

interaction:
DEPARTMENT

-L i
An EMPLOYEE Object

I -L

An EMPLOYEE Entity

Figure 5. An object and an entity

1.2.5 Object identifier

Each object is uniquely identified by an object identifier
(OID). An OID is a unique internally generated number
which the system assigns to an object the moment it is
created and cannot be changed during the lifetime of the
object database. The notion of an OID is different from
the concept of a primary key in the relational data model.
In the latter, a primary key is defined by one or more
attributes and uniqueness of tuples in a relation is
guaranteed by the value of the primary key. In 00 systems,
by contrast, two objects are different if they have

16

different OIDs, even if all their attributes have the same
values. The OID can be deleted only if the object is
deleted, and the same OID can never be reused in that
database. The OID is not tied to a physical address on
database disk, allowing for physical data independence in
00 systems. The use of OIDs allows objects to share
objects and makes possible the construction of general
object networks as we shall see in Chapter 4.

Khoshafian and Copeland (1986) describe several techniques
for implementing OIDs and conclude that using so-called
surrogates is the best technique. Surrogates are system-
generated, globally unique identifiers, completely
independent of the physical location and data contents of
an object.

1.3 Class

Objects with similar structures, behaviors, and
interactions may be grouped into a class. Thus, for
example, all the individual STUDENT objects of a university
can be abstracted into a STUDENT class, Figure 6.

0 0 0

Individual STUDENT objects:
each has structure, behaviors and
is able to interact with other objects.

Figure 6. STUDENT objects of STUDENT class

We will represent a class with a rectangle, labeled with a
descriptive name. For example the STUDENT class is
represented as shown in Figure 7.

STUDENT

structural
abstraction

behaviors

17

interaction
with objects)

Figure 7. Representation of a STUDENT class

Like an object, a class has the triple:

1. structural abstraction
2. behaviors
3. interaction with objects

An object is the fundamental modeling primitive in object
databases. We start by identifying objects which are then
grouped, based upon similarity in structure, behavior, as
well as interaction, to obtain classes. This is
essentially a bottom-up analysis. However, once the
classes are defined it is more convenient to take a top-
down view of the model during application development.
That is, we focus on classes from which individual objects
may be created if desired. The class then serves as a
template for generating a set of objects that are similar
with respect to structure, behavior, and interaction. Thus
each object in an 00 system is an instance of some class.

An example of the class concept in the Windows environment
is as follows. There are many applications, usually
represented by icons, of which the Word icon is an example.
When you double-click the Word icon, a Word document is
created. Similarly many other Word documents may be
generated. In this example, the Word application is the
class and the Word documents are instances of Word.

1.4 Analogy with Traditional Data Management Terms

To begin to put object concepts into perspective, we list
in Table 1 the new terms vis-a-vis familiar terms from
other data management approaches.

Conventional ER model Relational Object-
data processing system oriented

18

Field
variable
Field type
Record
File

Attribute Attribute

Key
Procedure
Procedure call

Domain Domain
Entity Row/Tuple
Entity type Table/Relation
Relationship Foreign key
Primary key Primary key
 Host lang+DML

Instance

Constraint
Obj ect/Instance
Class/ADT
Relationship
OID
Behavior/Method
Message

Table 1. Data management terms

The above analogies are by no means exact, but may help to
convey the spirit of the novel concepts.

19

2. OBJECT STRUCTURE

2.1 Structural Abstraction

The structural abstraction of an object consists of the set
of variables that describe that object. For example, a
student is described by the variables: SS#, MAJOR, GPA,
GRADES, STREET, CITY, STATE, ZIP. These descriptors, shown
in Figure 8, are called instance variables.

STUDENT

SS#, MAJOR, GPA,
GRADES,
STREET, CITY,
STATE, ZIP

behaviors

interaction
with objects

Figure 8. A STUDENT class

Often, instance variables are single-valued for a given
object at some point in time. However, an instance
variable may be multi-valued as is the case for GRADES.
The instance variable GRADES assumes an array of objects as
its value. For a particular student, the grades might be
A, A, B. A repeating group such as this is not permissible
in relational systems but is a hallmark of 00 systems. In
general, the values assumed by an instance variable may be
objects of arbitrary complexity, permitting types such as
video, audio, graphics, and digital maps. Thus 00 systems
are capable of handling complex objects.

2.1.1 Composite instance variable

The user may wish to collect some instance variables into a
single unit. This might be justifiable if the instance
variables will often be used together. A case in point is
the collection of STREET, CITY, STATE, ZIP of our student

20

example into a single instance variable called ADDRESS.
ADDRESS might be intended for purposes such as mailing
lists and marketing research. Another situation which
might warrant grouping the four instance variables is if
they collectively belong to several classes, say, STUDENT,
EMPLOYEE, and COMPANY as shown in Figure 9. Under either
of these two circumstances, the four instance variables may
be defined as a separate new class, ADDRESS, referenced by
instance variable ADDRESS of STUDENT, EMPLOYEE, and COMPANY
as shown in Figure 10. This is known as referential
object sharing. Here, STUDENT, EMPLOYEE, and COMPANY
classes share the ADDRESS class.

STUDENT

SS#, MAJOR, 6PA,
GRADES,
STREET, CITY,
state, ZIP

behaviors

interaction
with objects

EMPLOYEE |
|STREET,ZIP|
CITY,state | COMPANY |

|STREET,ZIP|
state,CITY

Figure 9. STUDENT, EMPLOYEE, and COMPANY classes

STUDENT
SSNO,MAJOR,
GPA, GRADES,
ADDRESS

algorithms

interaction
with objects

EMPLOYEE

..ADDRESS

COMPANY

..ADDRESS

ADDRESS
| STREET
j CITY
state

21

ZIP

algorithm

interaction!
|w/objects

Figure 10. Referential object sharing

2.1.2 Object state

The object state is the set of values that the instance
variables assume at a particular time. An example of an
object state of the STUDENT class is shown in Figure 11.
We shall see that an object state can only be accessed
using an algorithm of the given object's class.

STUDENT Class

instVar object state
SS# 525 37 1995
MAJOR Computer Science
6PA 2.9
GRADES A, A, B
STREET 2051 Rancho Alegre
CITY Pasadena
STATE CA
ZIP 91109

Figure 11. An object state of STUDENT class

Because of previous usage in relational systems, for
example, the terms object state and instance may appear to
be synonyms. However, in object orientation, an instance
includes the additional notions of behavior and
interaction.

2.1.3 Class, instance variables, and object states

To fix our thoughts, it is helpful to start to develop a
mental picture of what a class, its instances variables,
and states might look like. Accordingly, we use the

22

familiar table structure to display the class EMPLOYEE, its
instance variables, and two of its states.

EMPLOYEE Class

instance Variables statel state2

SSNO E103 E217
ENAME Smith Jackson
EXPERTISE Programmer DBA

Figure 12. Tabular representation of class

2.1.4 Constraints

Instance variables are constrained to hold certain kinds of
objects. Typical constraints are Float, Integer, and
String. Constraints provide a way to specify and enforce
restrictions on the values of the variable. Constraints
may be specified during class creation or modification.

2.1.5 Class definition

To specify a class, the following must be defined:

a) the name of the class
b) each instance variable of the class along with a data

type that may be a base data type or an abstract data
type

c) the behaviors
d) the interactions

For example, in Gemstone (1994), the structural
specification of the EMPLOYEE class may be done as follows,

Object suclass: 'EMPLOYEE'
instVarNames: #('SSNO• 'ENAME' ■EXPERTISE »)
constraints: #[

#[#SSNO, String],
#[#ENAME, String],
#[#EXPERTISE, String]
].

23

We shall study the Gemstone syntax, Including the class
creation statement, In Chapter 3. Note that behavioral
specification is not included in the above class creation
statement. Behavioral specification will be covered in
Chapter 3.

2.2 Abstract Data Type

Consider the set of integers ...-4, -3, -2, -1, 0, 1, 2, 3,
4, ... These numbers may be viewed as objects. As
objects, the numbers have descriptors such as NOTATION(1,
2, 3,...), NAME (one, two, three...), SIGN(+, -), etc.
Thus NOTATION, NAME, and SIGN are three of the instance
variables of integer numbers. As objects, the integer
numbers also have embedded algorithms such as
multiplication^) , addition(+), and subtraction^) .
Finally, as objects, the integer numbers may interact with
other objects. For example,
2 * 3.1 where 3.1 is a real number. Following our earlier
analysis, the individual integer objects may be grouped
into an INTEGER class. Figure 13.

INTEGER

NOTATION
NAME
SIGN

behavior:

interaction
w/objects

Figure 13. INTEGER class

The INTEGER class has been built into programming languages
and DBMSs and therefore the modeler does not normally have
to identify and define Integer as a class. Similarly the
set of real numbers are objects in the builtin FLOAT class.
There is also a STRING class. By convention such builtin
classes are called data types.

24

For the purpose of defining complex objects, the set of
conventional data types are rather limited. Thus the
approach in object database systems is to augment the
builtin data types with user-defined data types.
Accordingly, any class defined in an object model may be
considered a data type. Like FLOAT, INTEGER, and STRING
user-defined classes consist of objects with embedded
algorithms and interactions. To distinguish the user-
defined data types from builtin data types the former are
called Abstract Data Types (ADTs).

In the following example, EMPLOYEE class is an ADT. First
EMPLOYEE is defined, then it is used as a data type to
constrain the instance variable EMP in the definition of
ENROLLMENT.

Object suclass: 'EMPLOYEE'
instVarNames: #('SSNO' 'ENAME■ 'EXPERTISE■)
constraints: #[

#[#SSNO, String],
#[#ENAME, String],
#[#EXPERTISE, String]
].

Object suclass: 'ENROLLMENT'
instVarNames: #('EMP', 'GRADE')
constraints: #[

#[#EMP, EMPLOYEE],
#[#GRADE, String]
].

2.3 Instance Variable Encapsulation

Instance variables and the internal details of an object
are transparent to users and other objects. That is,
instance variables are hidden from and cannot be updated
directly by users and other objects. They may, however, be
updated using the object's own algorithms. This is known
as encapsulation.

An example from MS Windows - WINDOWSIZE is an instance
variable for the WINDOW class, Figure 14.

25

However, end users do not know what it is called
internally, nor do they know its data type. Yet we can
perform an operation such as dragging to alter the value of
WINDOWSIZE for a WINDOW instance. Thus the instance
variable WINDOWSIZE is encapsulated.

WINDOW

MENÜBAR
BORDERWIDTH
WINDOWSIZE

algorithm

interaction
w/objects

Figure 14. MS WINDOW class

Similarly, when a class is defined in an object database,
the instance variables are encapsulated. For example, in
the definition of the EMPLOYEE class in the last chapter
SSNO, ENAME, and EXPERTISE are encapsulated in a pure
object DBMS.
Since the instance variables names are transparent, the
only way to access the object state is by means of an
algorithm defined for the class. An advantage of this
architecture is that the internal representation of the
instance variables can be changed without implying changes
to the applications that use the class. That is, data
independence is provided.

2.4 Class Hierarchy and "IS A"

A class hierarchy is a tree in which each node is a unique
class of a database model. Along a hierarchical path, a
class at level n+1 is a structural and behavioral subclass
of a class at level n. To construct a class hierarchy one
identifies a class or several classes that are structural
subsets of another class in a model. Such a situation
presents an opportunity for introducing a class hierarchy.
For example, a class hierarchy may be defined for the
Classes SECRETARY, SCIENTIST, ENGINEER, and EMPLOYEE.
SECRETARY, SCIENTIST, and ENGINEER are all employees and

26

are therefore subsets of the EMPLOYEE class. The hierarchy-
is presented as shown in Figure 15.

EMPLOYEE

isa | isa| |isa

| SECRETARY | | SCIENTIST | | ENGINEER |

Figure 15. EMPLOYEE class hierarchy

The hierarchical relationship is aptly called "is a". That
is,

SECRETARY "is a" EMPLOYEE
SCIENTIST "is a" EMPLOYEE
ENGINEER "is a" EMPLOYEE

At the level of objects, every instance of a subclass is
also an instance of the superclass.

A second example of a class hierarchy is:

NUMBER

INTEGER

|POSITIVEINTEGER| |NEGATIVEINTEGER|

Figure 16. A NUMBER class hierarchy

What structural characteristics make this a class
hierarchy?

27

A third example comes from Windows:

WINDOW

UNBORDEREDWINDOW BORDEREDWINDOW

IMENU I

|WORD| |EXCEL| |WP| |WRITE|

Figure 17. An MS Windows class hierarchy

What structural characteristics make this a class
hierarchy?

2.4.1 Generalization or superclass construction

The process of creating a superclass for defined classes is
done by abstraction. In Figure 15, we created a
superclass, EMPLOYEE, by extracting common general
characteristics of certain objects. Such a superclass
construction is a process of abstraction that creates a new
class. In generalization, the instance variables of the
superclass are a subset of the instance variables of any
one of its subclasses.

2.4.2 Specialization or subclass construction

Just as a superclass is created by abstraction, subclasses
may be created by specializing a class. In specialization,
the instance variables of each subclass is a superset of
the instance variables of the superclass. SECRETARY,
SCIENTIST, ENGINEER are specializations of the class
EMPLOYEE, Figure 15.

28

To create subclasses SECRETARY, SCIENTIST, ENGINEER for
EMPLOYEE, the following Gemstone code seems reasonable:

EMPLOYEE subclass: 'SECRETARY'
instVarNames: #('SSNO' 'ENAME' 'EXPERTISE')

EMPLOYEE subclass: 'SCIENTIST'
instVarNames: #('SSNO' 'ENAME' 'EXPERTISE')

EMPLOYEE subclass: 'ENGINEER'
instVarNames: #('SSNO' 'ENAME' 'EXPERTISE•)

However, we shall see in the following section that an
object DBMS provides structural inheritance, thereby-
simplifying subclass definitions.

2.5 Structural Inheritance

The structures for classes SECRETARY, SCIENTIST, ENGINEER,
and EMPLOYEE are described using instance variables.
Therefore if a SECRETARY is a subset or specialization of
EMPLOYEE then the instance variables of SECRETARY and
EMPLOYEE must be quite similar. In fact, as stated in the
previous section, all the instance variables of EMPLOYEE
are applicable to SECRETARY. The same is true for
SCIENTIST and ENGINEER classes. In general, in a hierarchy
a subclass may inherit some or all the instance variables
of the superclass. An important feature of object
orientation is inheritance and inheritance of structural
properties of a superclass by its subclasses is our first
example of this. Suppose the instance variables of
EMPLOYEE are as shown in Figure 18.

29

 instance variables:
| EMPLOYEE | SSNO, NAME,

EXPERTISE

I SECRETARY | | SCIENTIST | | ENGINEER

Figure 18. Inheritance in EMPLOYEE class hierarchy

Then SECRETARY, SCIENTIST, ENGINEER would automatically
inherit the instance variables SSNO, NAME, and EXPERTISE
unless otherwise desired. It would be unnecessary to
denote these instance variables for the subclasses in the
diagram or even in the code. Thus if EMPLOYEE is defined
in Gemstone with the following code:

Object subclass: 'EMPLOYEE'
instVarNames: #('SSNO' 'NAME' 'EXPERTISE')

then the code for defining SECRETARY, SCIENTIST, ENGINEER
is:

EMPLOYEE subclass: 'SECRETARY'
instVarNames: #()

EMPLOYEE subclass: 'SCIENTIST'
instVarNames: #()

EMPLOYEE subclass: 'ENGINEER'
instVarNames: #()

In addition SECRETARY, SCIENTIST, ENGINEER may have their
proprietary instance variables for specialization as in
Figure 19.

 instance variables:
| EMPLOYEE | SSNO, NAME,

EXPERTISE

30

I SECRETARY | | SCIENTIST | | ENGINEER |

inst. var: inst. var: inst. var:
NO_EMPL_SERVICED NO_PUBLISHED NO_PROJECTS

Figure 19. Specialization in EMPLOYEE class hierarchy-

Si

The data definition for this model in Gemstone is:

Object subclass: 'EMPLOYEE'
instVarNames: #(■SSNO' ■NAME« 'EXPERTISE•)

EMPLOYEE subclass: 'SECRETARY'
instVarNames: #('NO_EMPL_SERVICED')

EMPLOYEE subclass: 'SCIENTIST'
instVarNames: #('NO_PUBLISHED•)

EMPLOYEE subclass: 'ENGINEER'
instVarNames: #('NO_PROJECTS')

The idea of inheritance is so appealing that in pure 00
systems, any class you create must be a subclass of another
class. In Gemstone, the class OBJECT is the "mother" of
all classes. Thus our EMPLOYEE class hierarchy may be
redrawn as shown in Figure 20.

|OBJECT|

|EMPLOYEE|

|SECRETARY| |SCIENTIST| |ENGINEER|

Figure 20. The OBJECT superclass

This explains the mysterious term "Object" in the previous
Gemstone data definition for EMPLOYEE:

Object subclass: 'EMPLOYEE'
instVarNames: #('SSNO' 'ENAME' 'EXPERTISE•)

EMPLOYEE inherits from OBJECT a storage format that enables
it to define named instance variables, etc. In turn,
EMPLOYEE can also define specialized variables that can be

32

exploited by its subclasses. For example, it would endow
its instances with storage slots called SSNO, ENAME, and
EXPERTISE. Thus an important part of designing an 00 class
is choosing its superclass. If someone else has defined a
class that provides some of the properties you need, you
can save a lot of time by using it as a superclass. Thus,
your class inherits proven data structures that you can
tailor to fit your own needs.

An example of a class hierarchy in the Windows architecture
is shown in Figure 21.

|OBJECT|

| WINDOW I
 inst, var: WINDOWCORNER, TITLEBAR, MENUBAR,

|BORDEREDWINDOW|
 inst. var: BORDERWIDTH

| TEXTWINDOW |
 inst. var: FONTS

Figure 21. Inheritance in a Windows class hierarchy

In this example, BORDEREDWINDOW and TEXTWINDOW inherit
WINDOWCORNER, TITLEBAR, MENUBAR, ... from the WINDOW class,

2.6 Instance Variable Overriding

To be able to monitor the values entered into instance
variables during initialization or update, constraints are
defined for each instance variable. Thus the variable is
restricted to contain only the specified kind of object.
Constraints are like domains in relation systems and define
the set of allowable values an instance variable may
assume. Like instance variables, constraints may be
inherited by subclasses. In the subclass, a constraint on
an inherited instance variable may be changed, thus
enabling an override of the superclass instance variable.

33

However, note that the inherited instance variable's
constraint must be a subclass of the inherited constraint.
For example, Smalllnteger is a subclass of Integer and,
therefore, Smalllnteger may be used in a constraint to
override Integer as in the following data definition of the
class hierarchy of Figure 22.

SCHOOL|

I NO OF STUDENTS

|HIGH SCHOOL|

Figure 22. School/High-School class hierarchy

The Gemstone data definition is

Object subclass: 'SCHOOL'
instVarNames: #('NO_OF_STUDENTS■ ...)
constraints: #[

#[#NO_OF_STUDENTS, Integer],
• • •

].

SCHOOL subclass: 'HIGH_SCHOOL■
instVarNames: #('NO_OF_STUDENTS•)
constraints: #[

#[#NO_OF_STUDENTS, Smal1Integer],
• • •

].

34

Assignments:

1. You wish to build an application that uses graphic
objects and you have specified the following classes:

SHAPES | CIRCLE
inst. var |
AREA
PERIMETER

inst. var
RADIUS

RECTANGLE
inst. var
LENGTH
WIDTH

TRIANGLE
|inst. var|
j ALTITUDEJ
BASE

SQUARE
inst. var

|RIGHT TRIANGLE
jinst. var

HYPOTENUSE

a) Draw the class hierarchy for the graphic objects.
b) List all the instance variables of the RightTriangle

class.

2. Consider the object model for a VEHICLE database
(McFadden and Hoffer 1991):

VEHICLE
SERIAL« |
WEIGHT
WHEELBASE j
MANUFACTURER-

AUTOMOBILE
TRUNK CAP

|TRUCK

OBJECT|

CARGO SP

|MOTOR BIKE |
SEAT STYLE

1

> COMPANY
NAME

LOCATION j
CONTACT > | PERSON

| | NAME
' I DOB

|AUTO CO
ALLOCATION|
TOT SALES I

|FOREIGN
IAUTO CO

35

IMPORTLIMIT I !
TRADE REP

inheritance relationship
 > aggregation relationship for composite instance

variables

Write a Gemstone data definition for VEHICLE, AUTOMOBILE,
and TRUCK only.

3. Specify a class and define two subclasses for it to
illustrate instance variable inheritance, overriding,
and specialization. Give the Gemstone data

definition.

36

3. OBJECT METHOD

3.1 Behavior

We have seen in the previous chapter that instance
variables carry structural and, as we shall see later,
interrelationship information about the objects of a class.
Thus, in order to manipulate an object, one must further
process the values of one or more of its instance
variables. This processing is done through algorithms to
express the behavior of an object. In traditional
applications, algorithms that operate on data values of
objects to provide information are packaged as procedures
and form part of programs that manipulate the values. In
00 methodology these algorithms, called methods, are an
integral part of the objects themselves. Methods manifest
object behavior. For example, the EMPLOYEE class in Figure
23 has the instance variables SSNO, NAME, DOB, and the
method current_age.

EMPLOYEE

SSNO, NAME, DOB

current_age =
TODAY'S DATE - DOB

interaction
with objects

Figure 23. EMPLOYEE class

The method current_age computes the current age of EMPLOYEE
objects using values of the variables TODAY'S DATE and DOB.
As in this example, all method names will be italicized.

The following are two examples, from Microsoft Windows, of
methods in action:

a) When you start the Word application and click File
New, a new instance of the WORD class is created.
This new instance may be used to prepare a Word document.
Here, new is a method of the WORD class. The method new is
as much a part of Word as the Borders and Icon that

37

structurally represent Word. Also note that you have no
access to the code that implements the method new.

b) When you select a paragraph of a Word document and
click Edit Copy, a method is invoked that copies the

selected object to the clipboard. Again the method Copy is
a part and parcel of Word. Also note that you have no
access to the code for the method Copy.

By contrast, relational tables do not have methods
associated with them.

3.2 Kinds of Methods

There are two kinds of methods: instance methods and class
methods.

3.2.1 Instance method

Instance methods are methods that enable instances to
respond to messages. In the specification of their
algorithms, instance methods usually refer to the instance
variables of a class. For example, in Section 3.1 the
method

current_age = TODAY'S DATE - DOB

Here current_age is an instance method that refers to
instance variable DOB in its algorithm.

Instance methods are applicable to and are understood by
instances.

3.2.2 Class method

A class method is one that is understood by a class, but
not by instances. For example, most classes contain the
method new which is used to create instances for the class
Class methods are applicable to and are understood by
classes.

3.3 Inheritance of Methods

38

The statements already made regarding subclass/superclass
construction for inheritance of instance variables apply-
equally well to the inheritance of methods. A subclass
inherits both the instance variables and methods of its
superclass. At times, instance variables drive the
construction of the hierarchy. For example, structuring
SECRETARY as a subclass of EMPLOYEE is a design that is
driven by a consideration of instance variables. Consider
the class hierarchy in Figure 24.

 method: current_age
EMPLOYEE I

| SECRETARY | | SCIENTIST | | ENGINEER |

Figure 24. EMPLOYEE class hierarchy and method inheritance

Even though the hierarchical construction may have been
driven by instance variables, advantage is taken of the
structure to inherit methods. In the example, each of the
subclasses SECRETARY, SCIENTIST, and ENGINEER inherits the
method current_age. Current_age is first written for
EMPLOYEE and due to inheritance, it may be reused by
SECRETARY, SCIENTIST, and ENGINEER. Hence, the concept of
inheritance provides a reusability mechanism.

At other times, it is methods that motivate the structuring
of class hierarchies. For example, structuring INTEGER as
a subclass of NUMBER in Figure 25 is based upon a
consideration of the methods that INTEGER would inherit
from NUMBER.

INUMBER|
 methods: *, +,

I INTEGER|

Figure 25. A NUMBER class hierarchy

39

This latter example shows that in addition to user-defined
methods such as current_age, certain builtin methods are
provided. Thus important and generally applicable methods
such as scalar comparisons, arithmetic operations, and
string manipulations are part of the system and may be
inherited along a hierarchical path. For example,
multiplication*) and addition(+) which may initially have
been defined for the NUMBER superclass may be inherited by
the INTEGER subclass.

An important builtin method which was discussed previously
is the method new. New is a method of the root class,
OBJECT. Applying new to a class creates a new object in the
class. Through inheritance a builtin method such as new is
available to every other class in the hierarchy. For
example, in Windows the subclasses WORD, EXCEL, WP, WRITE
inherit the method new from OBJECT, Figure 26. Thus each
of these applications may use the method new to create new
instances, that is, new documents of the various
applications.

40

I OBJECT|

I method: new

WINDOW

IBORDEREDWINDOW

IWORD I I EXCEL I WP WRITE

Figure 26. A Windows class hierarchy-

Consider also method inheritance in the Windows class
hierarchy in Figure 27. MOVEWINDOW, RESIZEWINDOW are
inherited by and are applicable to the subclasses
BORDEREDWINDOW and TEXTWINDOW.

|ACCESSORIES|
I methods: MOVEWINDOW, RESIZEWINDOW

|BORDERED| | TEXT
WINDOW WINDOW

Figure 27. Windows ACCESSORIES class hierarchy

3.4 Method Inheritance Algorithm

When the system invokes a method of an object, the entire
hierarchical path of the object is searched for the
matching method, using the following sequence:

41

1. Scan the class to which the object belongs
2. If the method is not found, scan the superclass
3. Repeat Step 2 until the method is found, or
4. The top of the class hierarchy is reached without
finding

the message. In this case the system will generate a
message to indicate that the method was not found.

To illustrate the scanning process, let's examine the
EMPLOYEE class hierarchy in Figure 28.

|EMPLOYEE| inst. var: SALARY
| method: monthPay = SALARY/12

I SCIENTIST| |ENGINEER|

Figure 28. Method lookup in EMPLOYEE class hierarchy

If we invoke the monthPay method of a SCIENTIST instance,
it will execute the monthPay method defined in its EMPLOYEE
superclass. This happens despite the fact that monthPay is
not explicitly defined as a method for SCIENTIST class.

Note the code reusability benefits obtained through 00
systems: the monthPay method's code is available to both
SCIENTIST and ENGINEER subclasses and to their subclasses.

3.5 Method Overriding

The inheritance procedure given in the last two sections
appears to suggest that it is mandatory for a subclass to
inherit the method of a superclass. Yet, it is sometimes
desirable for the subclass to override the definition of
the superclass methods. Accordingly, the inheritance
mechanism allows a class to specialize superclass methods
by additions and substitutions. If the name of a method
explicitly defined in a class is the same as a method of a
superclass, the method from the superclass is not
inherited; that is, the definition in the subclass which

42

likely gives a different behavior overrides the superclass

definition. Consider the salary raise example in Figure

29.

inst. var: SALARY
method:

annual raise
| EMPLOYEE |

1

= SALARY*5%

1

1
SECRETARY |

1
| SCIENTIST

inst. var:

1
| | ENGINEER |

inst. var:
NO_PAPERS NO_PROJECTS

(SCIENTIST) method: annual_raise = super annual_raise
+ SALARY*NO_PAPERS/100

(ENGINEER) method: annual_raise = super annual_raise
+

SALARY*NO_PROJECTS/10 0

Figure 29. Overriding in EMPLOYEE class hierarchy

In the salary raise example, when the method, annual_raise,
is invoked for SECRETARY the value returned is computed
from

annual_raise = SALARY*5%.

This is because SECRETARY inherits the method of superclass
EMPLOYEE. However, when the method, annual_raise, is
invoked for SCIENTIST the value returned is computed from

annual_raise = super annual_raise + SALARY*NO_PAPERS/100

This is because the annual raise method defined for
SCIENTIST overrides that of the EMPLOYEE superclass.

43

Similarly, the method, annual_raise, invoked for ENGINEER
returns the value computed from

annual_raise = super annual_raise + SALARY*NO_PROJECTS/100

Note that the pseudovariable super represents the
superclass. The use of super changes the method lookup as
follows:

1. Scan the superclass
2. Repeat Step 1 until the method is found, or
3. The top of the class hierarchy is reached without

finding the message. In this case the system will
generate a message to indicate that the method was not
found.

Figure 30 is an example from Microsoft Windows in which the
method Copy of the superclass Program Manager makes copies
of application icons whereas the method Copy of subclass
WORD makes copies of text to the clipboard.

PROGRAM MANAGER|

I method: Copy

IWORD|

method: Copy

Figure 30. Overriding in MS Windows

3.6 Polymorphism and Dynamic Binding

In the last section, we saw that the same method name may
be used by different classes and that those methods may
operate differently depending upon the class involved.
This phenomenon is known as polymorphism.

Polymorphism is achieved through dynamic (or late) binding.
Dynamic binding means that the system will bind a method
name at runtime to the appropriate method. Note that it is
not possible to do this neatly in the absence of dynamic
binding using procedure names in conventional programming.

44

In the latter environment, the desired effect can only be
achieved using case statements. The example in Appendix B
illustrates polymorphism.

3.7 Message

In traditional programming languages, procedures are
invoked by "calls". Correspondingly, 00 methods are
invoked by messages. To activate a method of an object, a
message is sent to that object. On receipt of the message,
the method is executed and a result is returned to the
sender. Activating an object's method involves

1. Specifying the target object
2. Specifying the name of the method
3. Specifying the arguments of the method, if any
4. Internally, calling the code that implements the method

and binding the parameters to the actual arguments of
the invocation

For a given method, a message pattern exists for specifying
1, 2, 3. Message patterns are discussed next in the
"Introduction to Gemstone".

45

*************jntroduction to Gemstone ****************

The Gemstone Message Syntax

Message Expressions - A message expression consists of:

o an identifier or expression representing the object to
receive the message. The latter is called the

receiver.

o one or more identifiers called selectors that specify
the message to be sent. A selector is a method name.

o zero, one, or more arguments that pass information
with the message

The general syntax is
receiver selector [argument]

(That is, object methodname [argument])

Messages are of three kinds, classified according to the
kinds and the number of their selectors and arguments.

When an object receives a message, it compares the incoming
message with all those that its class defines and invokes
the one whose message pattern matches the arriving message.

Unary Messages

Consists of a receiver and a single selector.

EMPLOYEE new "Class EMPLOYEE is the receiver and new is
the unary selector. This message

expression
creates an instance of EMPLOYEE"

An example from Windows - Create a new document with

Double-click Word, click New

This is equivalent to the message

WORD new

46

Binary Messages

Consists of a receiver, a single selector, and a single
argument.

2+8

The object 2 from INTEGER class is the receiver, + is a
binary selector, and 8 is the argument. When 2 sees the
selector +, it looks up the selector in its private memory
or protocol and finds the method to add the argument 8 to
itself.

An example from Windows - While in a Word document, choose
Paste. Text residing on the Clipboard, if any, is inserted
into the current text. This could be paraphrased

WorkingDocument Paste ClipboardText

Here WorkingDocument is the receiver, Paste is a binary
selector, and ClipboardText is the argument.

Keyword Messages

A keyword is a simple identifier ending in a colon.

EMPLOYEE subclass: 'ENGINEER'

Here EMPLOYEE is the receiver, subclass: is a keyword
selector, and 'ENGINEER' is the argument. The method
invoked by the message constructs class hierarchies. In
our case, the hierarchy

EMPLOYEE

I ENGINEER

is constructed.

An example from Windows - Renaming a file. First you
highlight the receiver object(a file). Then you click the

47

keyword selector Rename:, and then you enter the
NewFileName ,an argument, in the dialog box. This is
equivalent to the message

FileName Rename: "NewFileName"

Temporary Variable - Gemstone requires you to declare new
variable names before using them. To declare a temporary
variable, you surround it with vertical bars as in

|myTemporaryVariable|

myTemporaryVariable := 2.

Usage: to manipulate an object you need to assign the
object (actually the object's OID) to a temporary variable.
For example,

48

IAlex I

Alex := EMPLOYEE new

Returning Values - whenever a message is sent, the receiver
of the message returns an object. This object is the value
of the message expression. An assignment statement can be
used to capture a returned object:

|myVariable|
myVariable := 8 + 9. "the binary message 8+9

returns object 17. Next,
assign returned object 17 to
myVariable"

myVariable "return the value of
myVariable"

17 "returned value"

Structure and Examples of Methods

The first and last lines delimit the method:

method: EMPLOYEE "first line"
message pattern

(code)

% "last line"

The first line indicates that this code is a method and it
is for the EMPLOYEE class. The last line {%) is a
terminator. "Message pattern" gives the form in which the
method will be invoked. "Code" gives an implementation of
a behavior of the object.

To invoke this method apply the message

(EMPLOYEE instance) message pattern

A. A Simple Method for Testing

49

The following example defines the simplest possible method
for the EMPLOYEE class:

method: EMPLOYEE
isEMPLOYEE "the message pattern"

Atrue "a return statement"

The message pattern in the method is isEMPLOYEE. A
statement preceded by a caret(A) returns its value to the
expression that invoked the method.

When an instance of EMPLOYEE receives the message
isEMPLOYEE, it activates the method defined above, which
then returns the value true. For example,

I Alex |

Alex := EMPLOYEE new. "create an instance of EMPLOYEE
using a unary message and assign
the new instance to the variable
Alex"

Alex isEMPLOYEE "a unary message"

true "returned value"

B. Methods that use Arguments

Method arguments correspond roughly to subprogram arguments
or parameters. They enable you to pass information
(objects) to a method, just as subprogram arguments let you
pass information to a subprogram. The following example
defines for EMPLOYEE a method requiring a single argument:

method: EMPLOYEE
areYou: anObject "the message pattern"

"If the argument is the string
'EMPLOYEE•, return true.
Otherwise return false."

AanObject = 'EMPLOYEE'

50

In the example, the token anObject is like a formal
parameter or "dummy variable." At execution, Gemstone
replaces it with an actual value. In the following
invocation of areYou:, anObject takes on the value
•Airplane'

| Alex|

Alex := EMPLOYEE new.

Alex areYou: 'Airplane' "a keyword message"

false "returned value"

In the following invocation of areYou:, anObject takes on
the value 'EMPLOYEE'

I Alex|

Alex := EMPLOYEE new.

Alex areYou: 'EMPLOYEE'

true "returned value"

C. Methods for Initializing/Updating and Retrieving

Recall that the instance variables of EMPLOYEE are SSNO,
ENAME, EXPERTISE.

In the following, we write the method SSNO: for
initializing instance variable SSNO.

method: EMPLOYEE
SSNO: aNumber "the message pattern"

SSNO:= aNumber "assignment to inst. var.' SSNO "

Note that the method SSNO: is reusable by all instances of
EMPLOYEE and by instances of subclasses of EMPLOYEE.

51

In the following, we write the method SSNO for retrieving
values of instance variable SSNO.

method: EMPLOYEE
SSNO "the message pattern"

ASSNO "return the value of the inst. var "SSNO" "

Note that the method SSNO is reusable by all instances of
EMPLOYEE and by instances of subclasses of EMPLOYEE.

The following code uses methods SSNO: and SSNO respectively
to change the value of instance variable 'SSNO' and to
retrieve the new value.

52

I Alex I

Alex := EMPLOYEE new

Alex SSNO: '555239946' "a keyword message which assigns
the number 555239946 to new
EMPLOYEE Alex"

Alex SSNO "a unary message to retrieve
the

SSNO of the new EMPLOYEE"

555239946 "returned value"

Similar to the method for SSNO: and SSNO, the following two
sets of methods need to be written for EMPLOYEE. This is
left as an exercise.

ENAME:/EXPERTISE: and ENAME/'EXPERTISE

Respectively, these two sets of methods may be used to
initialize and retrieve values of the corresponding
instance variables.

The following three messages may be used to initialize Paul
instance of EMPLOYEE -

| Paul |

Paul := EMPLOYEE new

Paul SSNO: '213415678'.
Paul ENAME: 'Paul'.
Paul EXPERTISE: 'Teller'.

This may be more conveniently done through cascading.

Cascaded Messages - to send a series of messages to the
same object, cascade the messages as in

Paul SSNO: '213415678'; ENAME: 'Paul'; EXPERTISE: 'Teller'.

In either case, the object state is

Instance variable . State

53

SSNO 213415678
ENAME Paul
EXPERTISE Teller

Note:
Appendix A contains a user guide to the Jackson State
University Gemstone ODBMS.
*****************En(j Gemstone Syntax Preview***************

54

3.8 A Perception of Instance Variables, Instances and
Methods

To fix our thoughts, we continue to develop the picture,
first given in Section 2.1.3, of what a class, its
instances variables, instances, and methods might look
like. We use a table structure to display the EMPLOYEE
class, its instance variables, some of its instances, a
class method, and instance methods. In Figure 31, the
receiver of the class method new is the EMPLOYEE class.
The instance methods are applicable to the various EMPLOYEE
instances.

When an object receives a message, it compares the incoming
message with all those that its class defines and invokes
the one whose message pattern matches the arriving message.

EMPLOYEE Class classmethod new, ...

instVar instancel instance!
inst3....

SSNO E103 E217
ENAME Smith Jackson
EXPERTISE Programmer DBA

inst. methods
areYou >
isEMPLOYEE >

SSNO: >

SSNO >

ENAME: >

ENAME >

EXPERTISE: >

EXPERTISE >

Figure 31. Tabular Tabular structure of EMPLOYEE class

As stated previously, instance and class methods are part
and parcel of the class in much the same way as instance
variables are. When an object receives a message, it
compares the incoming message with all those that its class
defines and invokes the one whose message pattern matches

55

the arriving message. The next section elaborates on the
nature of methods of a class.

3.9 Protocol

A given class may have many messages, each message
corresponds to a single method. The collection of
messages, each identified by a message pattern and
accompanied by a detailed explanation of its usage, make up
the class protocol. For example, we have in Table 2 three
categories of methods for the EMPLOYEE class

EMPLOYEE Initialization/Updating Protocol

Message pattern Usage

SSNO: aString Initializes inst. var. SSNO to aString.

ENAME: aString Initializes ENAME to aString.

EXPERTISE: aString| Initializes EXPERTISE to aString.

EMPLOYEE Retrieval Protocol

Message pattern Usage

SSNO Retrieves value of inst. var. SSNO.

ENAME Retrieves value of ENAME.

EXPERTISE Retrieves value of EXPERTISE.

EMPLOYEE Testing Protocol

56

Message pattern | Usage

isEMPLOYEE | Test if a given object is an EMPLOYEE.
j Returns true if object is an EMPLOYEE.

areYou: anObject | Speculate about what an object is.
j Returns true if the argument is the
j string 'EMPLOYEE'. Otherwise return
j false.

Table 2. An example protocol

User-defined methods may be put in one or more categories.
The protocol is also known as the object's public aspect.
Other objects and users know the class by its protocol.
Given the protocol, the user knows the function of a
method, the message pattern with which to invoke the
method, but does not have access to the code of the method.
When an object receives a message, it compares the incoming
message with all those that are in its protocol and invokes
the one whose message pattern matches the arriving message.

3.10 Encapsulation

The internal representation of instance variables and
methods of the class is hidden from other objects and
users. The implementation of instance variables and
methods constitutes the object's private aspect. The
hiding of information is achieved through presenting the
user with protocols that specify and define available
message patterns. In pure 00 systems, a user's interaction
with data is confined to only messages defined from the
public aspect. Limited to this mode of database access,
the instance variables and the methods' code need not be
made available to the user. Thus encapsulation is achieved
for methods and instance variables.

57

Encapsulation makes the internal structure (the instance
variables, their data values, and the methods) of the class
transparent to the user and other objects. As such, the
only way to access the object state is by means of messages
defined using the class protocol. For example, for the
user-defined STUDENT class, we may define the methods
add_course, avg_GPA, etc. as integral parts of the STUDENT
class. Subsequently, these methods may be executed on
demand by appropriate messages. An advantage of this is
that the internal representation such as the instance
variables can be changed without implying changes to the
applications that use the class. That is, data
independence is provided. Thus, in 00 systems data
independence is achieved through the structuring of public
and private aspects for objects (Cattell 1994). Contrast
this with the three-level ANSI/SPARC architecture that
provides data independence in conventional database
systems.

58

Assignment:

1. Study the employee object database in Appendix B for
the

implementation of the concepts discussed so far.

2.
a) Specify a class and define subclasses to illustrate

method inheritance and overriding.

b) Give a data definition for the superclass in a).

c) Write methods to initialize the instance variables of
the class in b).

d) Using a temporary variable, create a new instance for
the

class in c) and initialize its instance variables.

3. Write a method to create a new employee object in the
employee database in Appendix B and return the new

object.

4. Which is easier for the modeler, structural or
behavioral abstraction? Discuss.

59

4. OBJECT INTERACTIONS

The previous two sections addressed the structures and
behaviors of classes. This section discusses interaction
of a class with other classes. Interactions are important
in database systems. In fact, the implementation and
subsequent navigation of relationships of objects is the
most compelling reason for developing database systems. Of
the various kinds of database systems, object technology
offers and exploits the most comprehensive set of
interactions (Loomis 1995). There are three general kinds
of interactions in object databases (Rob and Coronel 1993):

i. Inheritance (or hierarchical) Relationship
ii. Interclass Relationship
iii. Aggregation Relationship

The three kinds of interaction are discussed below.

4.1 Inheritance Relationship

The primary interaction in an object model is the class
hierarchy. The class hierarchy concept as well as its
major function of inheritance have been fully discussed in
Chapters 2 and 3. Basically, the construct provides code
reusability, an important justification for object
orientation. The construction of a hierarchy follows the
steps:

o choose a superclass from among the existing classes

o recursively specify subclasses from the remaining
subclasses

o if appropriate, create more specialized subclasses for
the original classes

For example, suppose we start with the classes

TRUCK, MOTORBIKE, VEHICLE, and AUTOMOBILE

Then

60

Stepl: Based upon the fact that each of AUTOMOBILE, TRUCK,
MOTORBIKE "is a" VEHICLE, we select VEHICLE as the
superclass

VEHICLE

VIN, WEIGHT, MAKE, MODEL

Step2: Make AUTOMOBILE, TRUCK, and MOTORBIKE subclasses of
VEHICLE

VEHICLE

VIN, WEIGHT, MAKE, MODEL

I I

|AUTOMOBILE| |TRUCK| |MOTORBIKE|

CAPACITY CARGO
SPACE

SEAT STYLE

Step3: At this point we introduce COMPACT and FULLSIZE as
useful subclasses for AUTOMOBILE

|VEHICLE|

|AUTOMOBILE| |TRUCK| |MOTORBIKE|

COMPACT FULLSIZE

NO-OF-DOORS NO-OF-CYLINDERS

61

However, some relationships cannot be represented using the
above steps. For example, when you need to define two (or
more) kinds of classes with similar but not identical
properties, and neither should be a subclass of the other,
do:

o abstract the common properties of the two (or more)
kinds of classes to obtain a new class

o designate the new class as a superclass

o make the classes in question subclasses for the new
superclass

For example, suppose we start with the classes

STORE and WAREHOUSE

62

IWAREHOUSE I | STORE |

|CODE,NAME| |CODE,NAME|
jADDRESS, j jADDRESS j
jBUDGET, j jBUDGET, j
CAPACITY STORENUM

Stepl: An abstraction of the common properties of WAREHOUSE
and STORE could be FACILITY

|FACILITY I

|CODE,NAME|
|ADDRESS,
BUDGET

Step2: Satisfied with the analysis in Stepl, FACILITY is
designated the superclass.

I FACILITY

Step3: WAREHOUSE and STORE are specified as subclasses of
FACILITY

[FACILITY I

I CODE,NAME,ADDRESS,BUDGET

| WAREHOUSE | | STORE |

63

CAPACITY STORENUM

A superclass need not provide direct data management
functionality; its sole purpose might be to organize your
representation of the world correctly, making the class
hierarchy understandable, and leaving a framework for
future expansion.

■ i Besides the user-defined classes of the designer's modeli

Gemstone has a builtin class hierarchy. The builtin
hierarchy consists of very basic and important classes such
as numbers, arrays, and sets complete with their data
structures and behaviors. Figure 32 displays a small
subset of the builtin hierarchy (Gemstone 1994).

OBJECT

COLLECTION I I MAGNITUDE

NUMBER

ARRAY| | SET |
 . I INTEGER

Figure 32. Subset of the Gemstone class hierarchy

Recall that we examined the INTEGER class in Section 2.2.
Here we see that in Gemstone and in other object DBMSs we
do not have to create the INTEGER class since it is a
builtin class. You can add new classes almost anywhere in
the hierarchy to take advantage of the data structures and
methods that have already been defined. For example,
making EMPLOYEE class a subclass of SET, in Figure 33,
makes it possible to model EMPLOYEE as a relation wherein
the tuples are unique and ordering of tuples is immaterial.

64

I SET I

I

|EMPLOYEE|

Figure 33. Set of employees

65

This is done as follows:

Object subclass: 'EMPLOYEE'
instVarNames: #('NAME• 'JOB' 'AGE■ 'ADDRESS')
constraints: ...

Set subclass: 'SetOfEmployees'
instVarNames: #()
constraints: #(EMPLOYEE)

Another situation which uses the SET class later in this
chapter is the hierarchy in Figure 34.

SET

|OidsOfPhysicsStudents|

Figure 34. Set of OIDs of Physics students

The class OidsOfPhysicsStudents inherits set properties
such as uniqueness and absence of ordering.

Much of the benefit of object orientation in database
systems is derived from both structural and behavioral
inheritance. Thus designing inheritance relationships is
extremely important and warrants careful analysis.

4.2 Interclass Relationship

Relationships in the ER model are expressed explicitly
using a diamond symbol between related entity types. The
representation of a relationship in the relational model is
fairly implicit and is achieved by embedding the primary
key of a target relation into a related relation. In the
latter, the inherited attribute is known as a foreign key.
Following this trend, in the object model, a related object
is entirely embedded in a target object. In an 00 diagram
the class of interest is represented by a rectangle into
which may be embedded zero, one, or many related classes.

66

For example, the relationship which asserts that a student
is associated with a department is diagrammed in Figure 35

67

STUDENT

SID, NAME, YEAR

method: GPA

|DEPARTMENT|

Figure 35. STUDENT class with relationship to DEPARTMENT

Since a relationship is mutual we could also have the
relationship in Figure 36.

| DEPARTMENT

| DNAME, BLDG|
I CHAIRNAME j

Imethod: deptl

STUDENT

Figure 36. DEPARTMENT class with relationship to STUDENT

4.2.1 Connectivity-

Connectivity of the relationship between classes is useful
in the 00 model and the possible ratios are 1:1, l:n, m:n
(Batini, Ceri, and Navathe 1992). Consider the policy:

A student is in one department

This policy is diagrammed in Figure 37 as a STUDENT class
in a one-relationship with DEPARTMENT.

68

STUDENT

SID, NAME, YEAR

method: GPA

DEPARTMENT

Figure 37. A student object belongs to one department

Consider the policy

A department has many students

This policy is diagrammed in Figure 38 as a DEPARTMENT
class in a many-relationship with STUDENT.

| DEPARTMENT |

I DNAME, BLDG|

I I

|method: dept\

|STUDENT|n

Figure 38. A department object has many students

We shall see that a many-relationship, such as DEPARTMENT
has with STUDENT, is implemented by introducing a SET
subclass.

4.2.2 Membership

The concept of membership of objects in a relationship is
also relevant in 00 models and may be shown in the object

69

diagram. If we restate the above policy to account for
undeclared majors, we have

A student is in zero or one department

then membership of student in department is optional and
this is denoted in Figure 39 by the embedded single-sided
rectangle representing the DEPARTMENT class.

STUDENT

SID, NAME, YEAR

method: GPA

DEPARTMENT 1

Figure 39. STUDENT class with optional membership in a
relationship

On the other hand, the policy

A department has one or more students

demands a mandatory membership for a department. That is, a
department must have at least one student. This is denoted
by the embedded double-sided rectangle representing the
STUDENT class in Figure 40.

| DEPARTMENT

| DNAME, BLDG|

I I
Imethod: deptI

 I
STUDENT||n|

70

Figure 40. A DEPARTMENT with mandatory membership in a
relationship

Despite the relevance of optional memberships in object
databases, we will assume mandatory memberships for all
relationships in this tutorial and ignore the distinction
between the two kinds of membership and their notations.

4.2.3 Representation of interclass relationships

Interclass relationships are implemented with instance
variables. Thus the embedded DEPARTMENT class in Figure 41
is replaced with DEPT instance variable as shown in Figure
42.

method: GPA

I DEPARTMENT 11

Figure 41. STUDENT-DEPARTMENT relationship

STUDENT

SID, NAME, YEAR

method: GPA

DEPT

Figure 42. Instance variable representation of DEPARTMENT

71

While instance variables SID, NAME, YEAR of STUDENT assume
primitive data values, DEPT which represents a related
object assumes an OID as its value. STUDENT'S relationship
with DEPARTMENT, a one-relationship, is implemented as an
instance variable whose value is a reference to the
appropriate DEPARTMENT object. An object state of STUDENT
is shown in Figure 43.

STUDENT class

instvar instance
SID 555 23 6657
NAME Smith
YEAR senior
DEPT OidOfDept

Figure 43. An object state of STUDENT

Now consider DEPARTMENT'S relationship with STUDENT in
Figure 44.

72

DEPARTMENT | | DEPARTMENT |

DNAME, BLDGl | DNAME, BLDGJ

|method: dept\ |method: dept\

STUDENT|n| | STUD

Figure 44. Instance variable representation of STUDENT

DEPARTMENT'S relationship with STUDENT, a many-
relationship, is implemented as an instance variable, STUD,
whose value is an OID that references a set of students.
Figures 44 and 45. In this case there are more than one
student in each department and a set is used for the
implementation.

DEPARTMENT Class

instvar instance
DNAME physics
BLDG JAP
STUD OidOfSetOfStudents

Figure 45. An object state of DEPARTMENT

More on the implementation details of relationships using
instance variables will be said in Section 4.2.5.1 and
Appendix C.

Clearly the value in an instance variable may be a
primitive or an OID that references object(s) of arbitrary
complexity, enabling object DBMSs to provide support for
complex objects.

In the next subsection, we digress slightly but
appropriately to take a brief look at how object diagrams
may be developed. This will give us a sense of how real-
world interactions may be captured as interclass
relationships.

73

4.2.4 Mapping an ER model to an object diagram

Disregarding behavior for a moment, the concept of class is
analogous to the combined concepts of entity and
relationship types. Thus it seems appropriate to capture
relationships for an object model through the use of ER
techniques. This prospect is particularly appealing since
the ER model has withstood the test of time, is well
understood, and is widely used in the data management
industry. In the first phase, a conceptual ER model is
obtained. Then using a technique that is similar to the
process of translating a conceptual model to a logical
design for a relational DBMS, the conceptual model is
mapped to an object diagram. For the purpose of mapping ER
diagrams to object diagrams, a comprehensive set of mapping
rules needs to be derived. Here, we show two such mapping
rules: one for l:n, the other for m:n.

Case 1. Binary l:n ER Diagram

A mandatory ER diagram with l:n connectivity is shown in
Figure 46. Entity type P with attributes attr(P) has a
one-to-many relationship R with entity type Q which has
attributes attr(Q). This ER diagram maps to the object
diagram in Figure 47.

| attr(P) |
1 P 1

|1
/R\
\ /

1*
| attr(Q) |
1 Q 1

Figure 46. l:n ER diagram of entity types P and Q

74

I attr(P) | | attr(Q)

I method I I method

Q |n| | | P |1|

Figure 47. Object diagram of classes P and Q

75

Case 2. Binary m:n ER Diagram

The binary ER diagram of entity types P and Q in Figure 48
maps to the object diagram in Figure 49. Observe that the
relationship type R becomes a class R with n:l
relationships to classes P and Q. R is known as an
intersection class.

attr(P)
P

|m
. R .

In

attr(Q)

Q

Figure 48. m:n ER diagram of entity types P and Q

1 p 1 1 R 1 1 Q 1

I attr(P) | | attr(R) | I attr(Q) |

| method | | method | | method |

p 111
— I
 I
Q |i|

n

Figure 49. Object diagram of classes P, Q, and R

With a full set of mapping rules, it is possible to draw an
ER diagram which may subsequently be mapped to an object
diagram.
If this is done, the designer could define methods for the
resulting classes.

4.2.5 Instance diagram

76

An instance diagram illustrates logically how objects of an
object diagram are stored in a database. It is insightful
to draw instance diagrams for given object diagrams. For
example, an instance diagram may serve as a useful guide
for writing the code to populate the object database. We
will discuss the instance diagram for two situations:

Case 1. A l:n relationship
Case 2. A m:n relationship.

4.2.5.1 Case 1 - Instance diagram for l:n relationship

Consider the DEPARTMENT-STUDENT class relationship diagram
in Figure 50.

DEPARTMENT |

| DNAME, BLDG|

I I
|method: dept\

| |STUDENT|n

I

STUDENT

SID, NAME, YEAR

jmethod: GPA

I DEPARTMENT 1

Figure 50. DEPARTMENT-STUDENT relationship

77

The corresponding instance diagram is given in Figure 51.
Instance diagrams make heavy use of OIDs, in part, to
represent relationships through references to OIDs. For
example, Physics department with OID=D001 contains the data
value OID=csl02 (shown in square brackets) for instance
variable STUD. This OID references a set of student OIDs.
These particular students have a relationship with the
Physics department. The individual OIDs of the set
reference the actual STUDENT objects. Each DEPARTMENT
instance has an instance variable STUD which references the
department's own set of student OIDs.

78

DEPARTMENT

DEPARTMENT

OID:D002 <■

| OID:D001

DNAMEphysics|[CS111]
BLDG JAP

■>| 0ID:CS111

STUD [CS102]

[S420]

v set of physics
 STUDENT olds
|OID:CS102|

[S210] |
[S311] I
[S514] |

STUDENT

STUDENT v | OID:S125|

 — • I
| 0ID:S311 | . |

|SID si |
jNAME Smith j
jYEAR senior |

—JDEPT [D001] j

[D002]

Figure 51. DEPARTMENT-STUDENT instance diagram

Relationships are implemented by an object referencing a
related object using the object's OID. The object does
this with an instance variable whose value is the related
object's OID. In the following we give a brief overview of
how OIDs are handled by examining student Smith's
relationship with a department. The tabular equivalent of
the STUDENT class and its relationship to the DEPARTMENT
class is shown in Figure 52. Note that in this tabular
representation, the value of DEPT is not primitive but

79

rather a complete object. In an 00 system, this object is
represented by its OID. Relational systems do not support
this kind of table.

80

STUDENT Class

SID NAME YEAR DEPT

sl Smith senior physics
JAP
STUD

s2 Clark junior physics
JAP
STUD

Figure 52. Tabular display of STUDENT class

In the following, recall that the message new causes new
objects of a class to be created. At the moment of its
creation an object is assigned an OID. The following code
creates an instance. Smith, for the STUDENT class.

| S | "declare S to be a temporary variable"

S := (STUDENT new)
SID:'si'; ■NAME:•Smith•; YEAR:•senior'; DEPT:'D001'

As soon as it is created, the object representing STUDENT
Smith is given an OID. With reference to Figure 51, the
OID with value S311 is immediately assigned to the
temporary variable S, thus S=S311. In a program, S
represents the Smith instance. The DEPT instance variable
contains the OID of Smith's department, Physics. Note that
STUDENT has a one-relationship with DEPARTMENT as shown in
Figure 50. In general, one-relationships are handled as
described above.

The situation is somewhat different in a many-relationship.
In this case we track the Physics department's relationship
with its students. The tabular equivalent of the
DEPARTMENT Class and its relationship to the STUDENT class
is shown in Figure 53. Note that in this tabular
representation, the value of STUD is not primitive but
rather several complete objects. In an 00 system, the OID
of this set of objects is the value of STUD. Relational
systems do not support this kind of table.

DEPARTMENT Class

DNAME BLD6 STUD

81

physics JAP si s2 s3 ...
Smith Clark Dixon
Senior Junior Junior
DEPT DEPT DEPT

geology DSN s7 s4
Blake Johnson
Senior Junior
DEPT DEPT

Figure 53. Tabular display of DEPARTMENT class

Recall the connectivity of the relationship in Figure 50:

A DEPARTMENT has several students.

And consider the creation of a Physics DEPARTMENT instance.

| D | "declare D to be a temporary variable"

D := (DEPARTMENT new)
DNAME:'physics'; BLDGr'JAP'; STUD:'csl02'

First you create a set of student OIDs for each department
by defining the former as a subclass of the builtin Set
class. These sets are objects in their own right.
Therefore each has an OID, say, csl02 and cslll in Figure
51. Each set is referenced by the appropriate DEPARTMENT
instance through its STUD instance variable. In
particular, instance variable STUD of the Physics
department references the set object csl02. In the
diagram, the object with OID=csl02 contains the set of OIDs
s210,s311, s514. In turn, each of these OIDs references a
STUDENT object. Thus starting from DEPARTMENT, STUD
references the set csl02 which, in turn, references Physics
student objects.

It should be clear from the foregoing that the notation for
containment refers to an OID and not to the class itself.
For example the diagram of Figure 54 should be understood
to mean that each department object has an instance
variable STUD, say, whose value is an OID of a set of
student OIDs.

DEPARTMENT

82

I DNAME, BLDG|

I I
|method: dept\

|STUDENT| n|

Figure 54. DEPARTMENT with a many-relationship

Appendix C contains a program that discusses and
demonstrates the implementation of interclass
relationships.

4.2.5.2 Case 2 - Instance diagram for m:n relationship

The treatment of m:n relationship is a little different
from the l:n and is reminiscent of the Codasyl m:n. First
an intersection class is introduced following the mapping
rule of Section 4.2.4. A STUDENT-COURSE relationship is
used to illustrate the m:n situation, Figure 55.

| STUDENT |

| SID, NAME |

I I
|method: GPA \

I I
||ENROLLMENT|n |

| COURSE

I
| CNO,DNAME, TITLE

83

1 method: CRS \
1 1 1 1
| |
| |ENROLLMENT|n
1 1 1

| ENROLLMENT |

| START DATE |

1 1
|method:
______________ T?

1 1
| |STUDENT|1 |
1 ; i 1 1
1 1
| |COURSE |1 |
1 1 I |

ENROLLMENT is an intersection class.

Figure 55. m:n STUDENT-COURSE relationship

Like relationship types in the ER model, the intersection
class can acquire its own instance variables. For example,
note the inclusion of a new instance variable, START DATE,
in the ENROLLMENT class. The instance diagram is given in
Figure 56. Navigation through this instance diagram
follows the same principles as those of the previous
section.

STUDENT

STUDENT

0ID:S13

OID:S557

|SID 6677
NAME Smith

lENRL [CEO03]

[]

COURSE

OID:C117

|CNO 520
DNAME CSC

I TITLE Database

[CE007]

84

collection of |
ENROLLMENT OIDs v |OID:CE007

OID:CE003

[E1027]
[E...]
[E1031]

[1
[E2111]
[E1027]

ENROLLMENT

ENROLLMENT v |OID:El03l|

->| OID:E1027

START DATE: j
1/9/95j

[S13] |
[C117]

I

Figure 56. STUDENT-COURSE instance diagram

4.3 Aggregation Relationship

Composite instance variables, first discussed in Chapter 2,
constitute an important kind of object interaction.
Consider the STUDENT class in Figure 57.

85

STUDENT
SSNO,MAJOR,
|GPA,
STREET, CITY|
STATE, ZIP

ADDRESS
STREET
CITY
STATE
ZIP

Figure 57. A composite instance variable

Recognizing that STREET, CITY, STATE, ZIP make up a
composite instance variable, ADDRESS, we could create the
new class, ADDRESS, with instance variables STREET, CITY,
STATE, ZIP as shown in Figure 57. Clearly the ADDRESS
class has a relationship with the STUDENT class. Thus, the
STUDENT-ADDRESS object diagram may be presented as in
Figure 58.

STUDENT
SSNO,MAJOR,
IGPA

ADDRESS

or equivalently

| STUDENT
|SSNO,MAJOR,
IOPA,
ADDRESS

ADDRESS
STREET
CITY
STATE
ZIP

Figure 58. STUDENT-ADDRESS relationship

86

The second diagram in Figure 58 is preferable when the
motivation for aggregation is referential object sharing by
several classes. Now the connectivity of the relationship
may be determined to obtain, say, the diagram of Figure 59.

87

STUDENT
|SSNO,MAJORf
IGPA

IADDRESS 11

Figure 59. Connectivity of STUDENT-ADDRESS relationship

The instance diagram for this model is given in Figure 60.
The two students, sl9 and s23, live at the same ADDRESS and
share the same ADDRESS object, rather than referencing two
different ADDRESS objects with equal object states. This
is known as referential object sharing which is
advantageous in updates of ADDRESS.

STUDENT STUDENT STUDENT

PID; s!9
|SSNO 2311|
|MAJOR math j
|GPA 3.6 |
ADDRESS [a9]

| OID: s23 |
| SSNO 6794 |
|MAJOR art |
|GPA 3.9 |

--ADDRESS

II
[a9] |

| OID: s29 |
|SSNO 3679 |
[MAJOR mus |
IGPA 2.8 |
|ADDRESS[al7]|

1 1 1
V V ADDRESS ADDRESS V

| OID : a9 |
|STREET 81 Gatej
|CITY Vicksbg|
|STATE MS |
|ZIP 39180 |

| OID : al7 |
|STREET 9 Lemon |
|CITY Dallas |
|STATE TX |
|ZIP 75219 |

Figure 60. Instance diagram of STUDENT-ADDRESS
relationship

The above analysis is based upon STUDENT'S relationship to
ADDRESS. Next, the designer determines whether or not the
reverse relationship from ADDRESS to STUDENT is relevant.
If so, then its connectivity is determined and analyzed in
the usual way to obtain, for example. Figure 61. That is,
an ADDRESS may belong to many students.

ADDRESS

88

STREET, CITY
STATE, ZIP

I STUDENT In

Figure 61. ADDRESS-STUDENT relationship

As a modeling construct, factoring out composite instance
variables reduces to relationships between classes. This
kind of relationship is called an aggregation relationship
(Bertino and Martino 1991). The analysis in Section 4.2,
including instance diagramming and implementation
considerations, are applicable to aggregation
relationships.

89

Assignment:

Draw an instance diagram for a m:n relationship between two
given classes.

90

5. OBJECT MODEL

Like in previous database approaches, data intended for use
in an object database must undergo modeling. The object
model should support the modeling of object structures,
behaviors, and relationships. While the goal of semantic
models is to provide mechanisms for structural and
relationship abstraction only, that of object models is to
provide mechanisms for structural and behavioral
abstraction as well as object interaction. A general
strategy to represent these object features is as follows.
Because of the primacy of inheritance in object databases,
representation of the hierarchy should provide the
structural underpinning for an object model. As we have
seen in Chapters 2, 3, and 4, the construction of
hierarchies is driven by structural and behavioral
considerations. The designer may choose to inherit class
hierarchies from an ER model of the enterprise since the ER
approach supports class hierarchies. However, ER class
hierarchies are not normally based upon behavior and
therefore the designer should take behavior into
consideration before adopting such class hierarchies. In
any case, the design of class hierarchies is the first task
toward drawing an object model. Relationships, including
those originating from composite instance variables, may
then be superimposed on the class hierarchies. The
analysis on relationships and the process of deriving them
from an ER model of the enterprise was presented in Chapter
4. The next several sections summarize the various
elements of the object model.

5.1 Representation of Classes in the Object Model

In keeping with the notation introduced earlier, we will
represent a class by a rectangle labeled with a descriptive
name.

5.2 Representation of Instance Variables in the Object
Model

The approach recommended for including instance variables
in the object model is to enumerate them by class under the
class heading. Because there is generally a relatively
large number of instance variables, it may not be

91

convenient to write them in the diagram itself. Rather,
the list of instance variables may be given on a separate
medium, such as a system dictionary, which is referenced by
the object diagram.

5.3 Representation of Methods in the Object Model

The approach advocated is to provide the names and
functionality of methods for a class in the class protocol.
As in the case of instance variables, protocols may be
provided on a separate medium, such as a system dictionary.

5.4 Representation of Inheritance Relationships in the
Object Model

We have, in our discussions, represented inheritance
relationships by straight line segments. We formally adopt
this practice for the object model.

5.5 Representation of Interclass Relationships in the
Object Model

A relationship between classes is represented by embedding
one class in the other. For example, if class A has a
relationship with class B, then class B is embedded in
class A following the containment notation used in Chapter
4.

5.6 Representation of Aggregation Relationships in the
Object Model

An aggregation relationship may be denoted either by
containment or by an arrow from the parent class to the
derived class. When the latter notation is used, the
arrows are relationships and should not be confused with
the pointers of instance diagrams.

5.7 Object Model Example

Figure 62 is an object model of a manufacturing COMPANY,
adapted from McFadden and Hoffer (1991). The diagram
follows the conventions discussed above.

92

OBJECT

VEHICLE

COMPANY

AUTOMOBILE I TRUCK

IMOTORBIKE

1 COMPANY

CONTACT > I Person

AUTO CO

|FOREIGN
IAUTO CO

TRADE REP-

_ inheritance relationship
> aggregation relationship

Instance Variables

VEHICLE
SERIAL«

SPACE
WEIGHT
WHEELBASE

MOTORBIKE
SEAT STYLE

COMPANY AUTOMOBILE TRUCK
NAME TRUNK CAPAC CARGO

LOCATION
CONTACT

AUTO COMPANY FOREIGN AUTO PERSON
ALLOCATION IMPORT LIMIT NAME
TOTAL SALES TRADE REP DOB

Protocols

VEHICLE Initialization/Updating Protocol

93

Message pattern Usage

SERIÄL#: aMimber Initializes SERIAL# to aNumber.

WEIGHT: aNumber Initializes WEIGHT to aNumber.

WHEELBASE: aNumberI Initializes WHEELBASE to aNumber.

VEHICLE Retrieval Protocol

Message pattern Usage

SERIAL# Retrieves value of SERIAL#.

WEIGHT Retrieves value of WEIGHT.

WHEELBASE Retrieves value of WHEELBASE.

and so on.

Figure 62. Object model of an auto MFG company

5.8 Conclusion

An object model and the corresponding instance diagram
embody all the concepts - object identity, structure,
behavior, interaction, inheritance, and encapsulation - of
the object-oriented paradigm. With an object model,
database implementation may begin and Appendixes B and C
give examples of this process. The example in Appendix B
contains inheritance but no interclass relationships and

94

the implementation program is relatively simple. However,
the example in Appendix C has both inheritance and
interclass relationships, making the implementation program
quite intricate. Data definition, database population, and
the query capability in Gemstone are demonstrated in the
examples.

As with many other areas in computer science, true
understanding of a novel concept comes only from hands-on
work. In the case of object-oriented database systems,
this means constructing simple object models and writing
programs to implement and process them. This tutorial
gives the fundamentals to tackle these tasks. Appendix A
is a user guide with a guest account number which makes
available the Gemstone object DBMS at Jackson State
University for implementing practice object databases.

95

References

Batini, C, Ceri, S.f and Navathe, S.B. (1992). Conceptual
database design: an entity-relationship approach.
Benjamin-Cummings, Redwood City, CA, 30-48.

Bertino, E., and Martino, L. (1991). "Object-oriented
database management systems: Concepts and issues," IEEE
Computer 4f 33-47.

Cattell, R.G.G. (1994). Object data management. Addison-
Wesley, Reading, Mass., 104-135.

Date, C.J. (1995). An introduction to database systems. 6th
ed., Addison-Wesley, Reading, Mass., 626-709.

Gemstone Corporation. (1994). Gemstone programming guide.
Gemstone Corporation, Beaverton, Oregon.

Goldberg, A., and Robson, D. (1983). Smalltalk-80: the
language and its implementation. Addison-Wesley, Reading,
Mass.

Khoshafian, S.N., and Copeland, G.P. (1986). "Object iden
tity," ACM proceedings of the conference on OOPSLA. New
York, 406-416.

Loomis, M.E.S. (1995). Object databases: the essentials.
Addison-Wesley, Reading, Mass., 40-45.

McFadden, F.R. and Hoffer, J.A. (1991). "Data concepts and
modeling." Database management. Benjamin/Cummings, Redwood
City, CA, 121-125.

Rob, P., and Coronel, C. (1993). Database systems: design,
implementation, and management. Wadsworth, Belmont, CA,
417-474.

96

Appendix A

Gemstone User Guide

PART 1) TO ACCESS THE NETWORK

F> telnet stallion.jsums.edu

LOGIN: gemusrl
PAS SWORD: u s r geml

(enter 2 for terminal type 2)

THE FOLLOWING COMMAND RETURNS 2 FILENAMES WHICH
INDICATE THAT GEMSTONE IS UP

$ stonelist

GEMSERVER40
NETLDI40

PART 2) TO LOG ON

$ topaz1

TOPAZ > set gemstone gemserver40 user gemusrl password
gemstone

TOPAZ > login

TOPAZ 1> (see Part 4 for entering a session)

PART 3) TO LOG OFF

TOPAZ 1> exit

$ exit

F>

97

PART 4) A GEMSTONE SESSION

NOTE THAT GEMSTONE IS CASE SENSITIVE

TO DEFINE A CLASS.

98

TOPAZ 1> printit
Object subclass: 'Animal'

instVarNames: #('NAME• 'favoritefood• ■habitat•)
inDictionary: UserGlobals
constraints: #[

[#NAME, String],
[#favoritefood, String],
[#habitat, String]
].

TO CREATE AN INSTANCE OF, SAY, ANIMAL

TOPAZ 1> printit
UserGlobals at: ttaDog put: animal new.
"This is equivalent to laDogl aDog := animal new.

TO RETRIEVE THE VALUE OF aDOG'S NAME

TOPAZ 1> printit
aDog NAME

TO CREATE A METHOD, SAY, FOR ANIMAL

TOPAZ 1> set class animal

TOPAZ 1> method: A

NAME: aNAME
NAME := aNAME

%

PART 5) TO EDIT THE PREVIOUS RUN USING vi

TOPAZ 1> set editorNAME vi
TOPAZ 1> edit last

PART 6) INPUT FROM A FILE

YOU CAN DEVELOP YOUR SCRIPT WITH vi AND INPUT THE
FILE INTO TOPAZ

TOPAZ 1> spawn

99

$ vi fileNAME

(type up the script as in Part 4.)

100

TO RETURN TO TOPAZ FOR EXECUTION

$ Ad

TOPAZ 1> input $HOME/fileNAME

PART 7) TO CAPTURE YOUR TOPAZ SESSION IN A FILE

TO CAPTURE YOUR TOPAZ SESSION IN A FILE, SAY,
ANIMALTEST.LOG FOR THE PURPOSE OF DEBUGGING.

TOPAZ 1> output push animaltest.log

START YOUR SESSION NOW. WHEN THRU, SPAWN TO vi TO
SEE THE SESSION in ANIMALTEST.LOG.

101

Appendix B

Inheritance Relationship Implementation

An Employee Database

The implementation of an object model that consists solely
of hierarchical relationships is relatively simple. About
as simple as a relational system implementation.
The following is the implementation of an employee
database. The example illustrates initializing, updating,
and retrieving methods; structural and behavioral
inheritance; and polymorphism.

Object Model for an Employee Database

The data model consists of three employee classes:
SECRETARY, SCIENTIST, ENGINEER. The three classes are
grouped into a class EMPLOYEE which contains the shared
characteristics of the subclasses SECRETARY, SCIENTIST,
ENGINEER. The class hierarchy is given in Figure Bl.

OBJECT

EMPLOYEE

|SECRETARY| |SCIENTIST| |ENGINEER|

Figure Bl. Employee Class Hierarchy

Gemstone Data Definition

In Gemstone 's 00 environment, all classes are derived from
the OBJECT superclass and, for that reason, inherit all of
its characteristics. Note that class definitions are made

102

in a hierarchical sequence. The following example creates
EMPLOYEE as a subclass of OBJECT:

103

printit
Object subclass: 'employee'

instVarNames: #('ssno' 'name' 'expertise' 'salary')
InDlctionary: UserGlobals
constraints: #[

#[#ssno, String],
#[#name, String],
#[#expertise. String],
#[#salary, Integer]

]

Naturally, a subclass is likely to have characteristics
that distinguish it from its superclass. For example,

the SECRETARY subclass has a unique numserviced - number of
employees supported;
the SCIENTIST subclass has a unique numpublished - number
of papers published;
the ENGINEER subclass has a unique numprojects - number of
projects undertaken.

The 00 environment makes it easy to add such specializing
instance variables once the subclass is derived from its
superclass. The following lines create the subclasses
SECRETARY, SCIENTIST, ENGINEER:

printit
employee subclass:

instVarNames:
inDictionary:

'secretary'
#('numserviced'
UserGlobals

printit
employee subclass:

instVarNames:
inDictionary:

•Scientist'
#('numpublished')
UserGlobals

printit
employee subclass:

instVarNames:
inDictionary:

• engineer'
#('numprojects')
UserGlobals

104

Methods for Populating/Updating and Retrieving

Each method is a code that defines a specific operation
that we want the object to perform. Each method has a name
to identify it. A class provides storage for all the
methods that describe the behavior of the objects in that
class. The methods for the EMPLOYEE class are derived
next.

set class employee
method: A

ssno: aString

"Modify the value of the instance variable •ssno'."
ssno := aString

method: A

name: aString

"Modify the value of the instance variable 'name'."
name := aString

'S

method: A

expertise: aString

"Modify the value of the instance variable 'expertise'."
expertise := aString

method: A

salary: anlnteger

"Modify the value of the instance variable 'salary'."
salary := anlnteger

'S

method: A

salary

"Return the monthly salary of employee."
Asalary

method: A

raise

A(salary*0.05)

105

set class secretary
method: A

numserviced: anlnteger

"Modify the value of the Instance variable 'numserviced1.11

numserviced := anlnteger

method: A

total

"Return a secretary's number of employees serviced."
Anumserviced

'S

set class scientist
method: A

numpublished: anlnteger

"Modify the value of the instance variable 'numpublished'."
numpublished := anlnteger

S'

method: A

total

"Return a scientist's number of publications."
Anumpublished

S'

set class engineer
method: A

numproj ects: anlnteger

"Modify the value of the instance variable •numprojects'."
numprojects : = anlnteger

S'

method: A

total

"Return an engineer's number of projects."
Anumprojects

Instantiation

Next we will create some instances of the subclasses we
have already defined.

106

printit

UserGlobals at: ttedna put: secretary new.
's

printit

edna ssno: '555 23 9946'; name: 'edna shields'; expertise:
•secretary"; salary: 19000; numserviced:
15

printit

UserGlobals at: #bob put: scientist new.

printit

bob ssno: '666 73 6645'; name: 'bob davis'; expertise:
'scientist'; salary: 40000; numpublished: 5

107

printit

UserGlobals at: #bill put: engineer new.

printit

bill ssno: '667 52 2261'; name: 'bill Johnson'; expertise:
•engineer'; salary: 50000; numprojects: 3
•"o

The messages ssno, name, expertise, salary invoke the
respective methods inherited from the EMPLOYEE superclass.

Overriding and Polymorphism

The raise method in the EMPLOYEE superclass defines the
annual raise for each object. Scientists receive an annual
raise
supplement which is 1% of the annual salary per paper
published. Consequently, to implement the raise method for
scientist we may reuse the EMPLOYEE raise method for the
subclass SCIENTIST.

set class scientist
method: A

raise
A(super raise) + (salary*numpublished/100)

108

Appendix C

Interclass Relationship Implementation

An Education Database

The sequence in which classes of an object model may be defined for an object
DBMS is driven by the relationships in the model. We will use C.J. Date's
(1995) education enterprise to illustrate the process. Also, writing methods to
populate an object database that has relationships is a rather delicate task.
Thus after data definition, programs which illustrate the process of populating a
database in the presence of interclass relationships are presented. In the
process, the typical query capability of an object DBMS is shown. First we
derive an object model, Figure C1, for the education enterprise. The education
database contains information about an inhouse company education training
scheme. The informal statement of the underlying semantics is that for each
training course, the database contains details of all offerings of that course; for
each offering it contains details of all student enrollments for that offering. The
database also contains information about the employees.

OBJECT

ENROLLMENT

I EMPLOYEE I

EMP,GRADE

I EMPLOYEE I

I EMPNO,ENAME,JOB

TEACHER

OFFERING

ENROLLMENT I

OFFNO,ODATE,
LOCATION,
ENROLLMENTS

CRSNO,TITLE,
OFFERINGS

109

COURSES

Figure ci. Object model for an education database

Gemstone Data Definition

The ADT used in a constraint definition must be defined beforehand. Thus, in the definition of a
set subclass, the class which constrains the set subclass must be defined first. For this reason,
in the example that follows, the 'employee' class is defined before the 'eset' subclass. Also,
when an ADT constrains an instance variable, the ADT must be defined first. For example, in the
definition of 'enrollment' where 'emp' is constrained by the 'employee' ADT, the 'employee' ADT is
defined before 'enrollment'.

"Begin class structure definitions"

"In addition to the five classes in the object model, five collection classes will be defined:
employee set, eset; enrollment set, nset; offering set, oset; course set, cset; teacher set, tset."

printit
Object subclass: 'employee'

instVarNames: #('empno' 'ename' 'job')
inDictionary: UserGlobals
constraints: #[

#[#empno, String],
#[#ename, String],
#[#job, String]

]•
%

"Now that the employee class is defined we can define 'eset' which is constrained by employee"

printit
Set subclass: 'eset'

instVarNames: #()
inDictionary: UserGlobals
constraints: employee.

%

"Enrollment's instance variable 'emp' is also constrained by the already defined 'employee'ADT.
Relationship diagram:

no

, n A 1
enrollment | 1 employee

printit
Object subclass: 'enrollment'

instVarNames: #('emp' 'grade')
inDictionary: UserGlobals
constraints: #[

#[#emp, employee],
#[#grade, String]

]■
%

"Now that the enrollment class is defined we can define 'nset' which is constrained by enrollment''

printit
Set subclass: 'nset'

instVarNames: #()
inDictionary: UserGlobals
constraints: enrollment.

%

"Now that 'nset' is defined we can define 'offering' whose instance variable 'enrollments' is
constrained by nset. Relationship diagram

 A n --
| offering | 1 enrollment |
 V

nset
ti

printit
Object subclass: 'offering'

instVarNames: #('offno' 'odate' location' 'enrollments')
inDictionary: UserGlobals
constraints: #[

#[#offno, String],
#[#odate, String],
#[#location, String],
#[#enrollments, nset]

]■
%

ill

"Now that 'offering' is defined we can define 'oset' which is constrained by offering"

printit
Set subclass:'oset'

instVarNames: #()
inDictionary: UserGlobals
constraints: offering.

%

"Now that 'oset' is defined we can define 'course' whose instance variable 'offerings' is
constrained by oset. Relationship diagram

| course | 1 offering |
 V

oset

printit
Object subclass: 'course'

instVarNames: #('crsno' 'title' 'offerings')
inDictionary: UserGlobals
constraints: #[

#[#crsno, String],
#[#title, String],
#[#offerings, oset]

]•
0

"Now that 'course' is defined we can define 'cset' which is constrained by course"

printit
Set subclass: 'cset'

instVarNames: #()
inDictionary: UserGlobals
constraints: course.

'0

"Now that 'cset' is defined we can define 'teacher' whose instance variable 'courses' is
constrained by cset. Relationship diagram

 A n
| Teacher | 1 course |
 V

112

cset
N

printit
employee subclass: 'teacher'

instVarNames: #('courses')
inDictionary: UserGlobals
constraints: #[

#[#courses, cset]

1
%

"Now that 'teacher' is defined we can define 'tset' which is constrained by teacher"

printit
Set subclass: 'tset'

instVarNames: #()
inDictionary: UserGlobals
constraints: teacher.

%

Interclass Relationships in the Education Database

| Teacher |

I

'l'n

| course |

I

'l'n

| offering |

I

'l'n
 n A 1
| enrollment | 1 employee |
 V

113

Populating/Updating and Retrieving

"Populating the employee class. The Topaz tool makes you set the class for which a method is
to be defined"

"The next 3 methods define the methods for initializing/updating this class's instances"

set class employee

method:A

empno: aString
empno := aString

%
method:A

ename: aString
ename := aString

%
method:A

job: aString
job := aString

%

"The next 3 methods define the methods for retrieving this class's instance values"

method:A

empno
Aempno

70

method:A

ename
Aename

%
method:A

job
Ajob

%

set class eset

114

"The method, add_empno: add_ename: addjob:, is invoked from the 'set of all employees' to
create a new employee, initialize its instance variables, and include it into the 'set of all

employees'."

method:A

add_empno: aStringl add_ename: aString2 addjob: aString3

| emp_oid |

"emp_oid = an employee object"

emp_oid := employee new.
emp_oid empno: aStringl; ename: aString2; job: aString3.
UserGlobals at: #emp_oid put: emp_oid.

self add: emp_oid.
%

"Create the 'set of all employees'."

printit
UserGlobals at: #SetOfAIIEmps put: eset new
%

"Invoke the method, addjsmpno: add_ename: addjob:"

printit
SetOfAIIEmps add_empno:'e009' add_ename: 'watt' addjob: 'engineer'.
%

"Populating the course class."

set class course

"The next 3 methods define the methods for initializing/updating this class's instances"

method:A

crsno: aString
crsno := aString

%
method:A

title: aString
title := aString

%

115

method:A

offerings: aString
offerings := aString

%

"The next 3 methods define the methods for retrieving this class's values"

method:A

crsno
Acrsno

%
method:A

title
Atitle

%
method:A

offerings
Aofferings

%

set class cset

The method add_crsno: addjitle: is invoked from the 'set of all courses' to create a new
course, initialize its instance variables, and include it into the 'set of all courses'.''

method:A

add_crsno: aStringl addjitle: aString2

| crs_oid SetOfOfrs |

"crsjoid = a course object
SetOfOfrs = set of offerings of this particular course"

crs_oid := course new.
crs_oid crsno: aStringl; title: aString2.
UserGlobals at: #crs_oid put: crs_oid.

self add: crs_oid.

SetOfOfrs := oset new.
crs_oid offerings: SetOfOfrs.
UserGlobals at: #SetOfOfrs put: SetOfOfrs.
%
"Create a new set of all courses"

116

printit
UserGlobals at: #SetOfAIICrs put: cset new
%

Invoke the method add_crsno: addjitle:

printit
SetOfAIICrs add_crsno: '422' addjitle: 'database technology'.
%

'Populating the Offering class."

set class offering

The next 4 methods define the methods for initializing/updating this class's instances"

method:A

offno: aString
offno := aString

%
method:A

odate: aDatetime
odate := aDatetime

%
method:A

location: aString
location := aString

%
method:A

enrollments: aString
enrollments := aString

%

"The next 4 methods define the methods for retrieving this class's instances"
method:A

offno
Aoffno

%
method:A

odate
Aodate

%
method:A

117

location
location

%
method:A

enrollments
Enrollments

%

set class oset

"The method add_offno: add_odate: addjocation: fnd_crs: is invoked from the 'set of all
offerings' to create a new offering, initialize its instance variables, and include it into the 'set of all
offerings'.''

method:A

add_offno: aStringl add_odate: aString2 addjocation: aString3 fnd_crs: aString4

| off_oid SetOfEnr crsofr offeroid |

"offjoid = an offering object. SetOfEnr = set of enrollments for this particular
offering"

off_oid := offering new.

off_oid offno: aStringl; odate: aString2; location: aString3.
UserGlobals at: #off_oid put: off_oid.

self add: off_oid.

SetOfEnr := nset new.
off_oid enrollments: SetOfEnr.
UserGlobals at: #SetOfEnr put: SetOfEnr.

"Given a crsno find the corresponding course object, crsofr, for the new offering object, locate
the set of offerings for the course, offeroid, and add its OID to it

| course | 1 offering |

oset

crsofr := SetOfAIICrs detect: [:cx | aString4 = ex crsno].
offeroid := crsofr offerings.

118

offeroid add: off_oid.
%

"Create the set of all offerings"

printit
UserGlobals at: #SetOfAllOffs put: oset new
%

"Invoke the method add_offno: add_odate: addjocation: fndjors:"

printit
SetOfAIIOffs add_offno:'004' add_odate: '01/8/1996' addjocation: 'JAP' fnd_crs:'422'.
%

"Populating the enrollment class."

set class enrollment

"The next 2 methods define the methods for initializing/updating this class's instances"

method:A

grade: aString
grade := aString

%
method:A

emp: aString
emp := aString

%

"The next 2 methods define the methods for retrieving this class's instances"

method:A

grade
Agrade

%
method:A

emp
Aemp

%

set class nset

119

"The method addjgrade: fnd_oft1: fnd_off2: fnd_emp: is invoked from the 'set of all enrollments'
to create a new enrollment, initialize its instance variables, and include it into the 'set of all
enrollments'.''

method:A

adchgrade: aStringl fnd_off1: aString2 fnd_off2: aString3 fnd_emp: aString4

| enr_oid crsofr offeroid ofrenr enroloid empofr |

"enrjoid = an enrollment object"

enr_oid := enrollment new.

enr_oid grade: aStringl.
UserGlobals at: #enr_oid put: enr_oid.

self add: enr_oid.

"Given an empno find relevant employee object for this enrollment, empofr, to determine
existence"

empofr := SetOfAIIEmps detect: [:ex | aString4 = ex empno].
enr_oid emp: empofr.

"Given a crsno find corresponding course object, crsofr, and given an off no find the relevant
offering object, ofrenr, for this new enrollment object."

 A n A n
| course | 1 offering |— —| enrollment |

oset nset

crsofr := SetOfAIICrs detect: [:cx | aString2 = ex crsno].
offeroid := crsofr offerings.
ofrenr := offeroid detect: [:ox | aString3 = ox offno].

"enroloid = set of OlDs of enrollment objects"

enroloid := ofrenr enrollments,
enroloid add: enr_oid.
%

"Create the set of all enrollments"

printit

120

UserGlobals at: #SetOfAIIEnrs put: nset new
%

"Invoke the method add_grade: fnd_off1: fnd_off2: fnd_emp:"

printit
SetOfAIIEnrs add_grade:'a* fnd_off1: '422' fnd_off2: '004' fnd_emp:'e009'.
%

"Populating the Teacher class."

set class teacher

"The next method defines the methods for initializing/updating this class's instances"

method:A

courses: aString
courses := aString

%

"The next method defines the methods for retrieving this class's instances"

method:A

courses
Acourses

%

set class tset

"The method fndjemp: is invoked from the 'set of all teachers' to create a new teacher, initialize
its instance variables, and include it into the 'set of all teachers'."

method:A

fnd_emp: aStringl

| tch_oid emptch |

"tch_oid = a teacher object"

tch_oid := teacher new.

UserGlobals at: #tch_oid put: tch_oid.

121

self add: tch_oid.

'Given an empno find employee object, emptch, corresponding to this teacher'

emptch := SetOfAIIEmps detect: [:ex | aStringl = ex empno].

"Convert the found employee into the new teacher object using substitution"

tch_oid empno: emptch empno.
tch_oid ename: emptch ename.
tch_oid job: emptch job.
%

"Create the set of all teachers"

printit
UserGlobals at: #SetOfAIITchs put: tset new
%

"Invoke the method fnd_emp"

printit
SetOfAIITchs fnd_emp:'e009'.
%

122

Appendix D

Course Outline

Instructor: Kofi Apenyo

JULY 10, 1995 MONDAY 10:00AM - 11:30AM

1. INTRODUCTION
Introduction
Obj ect

Structure
Behavior
Interaction
Definition
Object Identifier

Class
Analogy with Traditional Data Management Terms

2. OBJECT STRUCTURE
Structural Abstraction - Instance Variable

Composite Instance Variable
Object state
Class, Instance Variables, and Instances
Class variables
Constraints
Gemstone Class Definition

Abstract Data Type
Instance Variable Encapsulation
Class Hierarchy and "is a"

Generalization or Superclass Construction
Specialization or Subclass Construction

Structural Inheritance
Instance Variable Overriding

JULY 11, 1995 TUESDAY 10:00AM - 11:30AM

3. OBJECT METHOD
Behavior - Method
Kinds of Methods

Instance Method
Class Method

Inheritance of Methods
Method Inheritance Algorithm
Method Overriding
Polymorphism and Dynamic Binding
Message

JULY 13, 1995 THURSDAY 10:00AM - 11:30AM

4. OBJECT DBMS

123

Introduction to Gemstone
A Perception of Instance Variables, Instances, Methods
Protocol
Encapsulation
Demo - Employee database example

JULY 19, 1995 WEDNESDAY 10:00AM - 11:30AM

5. OBJECT INTERACTIONS
Hierarchy

The Gemstone Class Hierarchy
Interclass Relationship

Connectivity
Membership
Aggregation
Mapping an ER Model to an Object Diagram
Object Instance Diagram

Case 1 - Object Diagram for l:n
Case 2 - Object Diagram for m:n

Aggregation Relationship

124

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

PuWicmporUngburdenformiscdlectionofi,^^^
tod* needed, and completing and reviewing the collection of information. Send comments regarding this burden M. or any other aspect of ^»^ISTT^S^ä^
for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Dav,s Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
May 1996

3. REPORT TYPE AND DATES COVERED
Final report

4. TITLE AND SUBTITLE
Object Database Systems: A Tutorial

6. AUTHOR(S)
Kofi Apenyo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Corps of Engineers

Washington, DC 20314-1000

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

Technical Report ITL-96-1

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

An object model and the corresponding instance diagram embody all the concepts-object identity, structure, behavior,
interaction, inheritance, and encapsulation-of the object-oriented paradigm. In an object-oriented data model, an entity is
represented as an instance (object) of a class that has a set of properties and operations (methods) applied to the objects. A
class, and hence an object, may inherit properties and methods from related classes. Objects and classes are dynamic and can
be created at any time. With an object model, database implementation may begin.

As with many other areas in computer science, true understanding of a novel concept comes only from hands-on work. In
the case of object-oriented database systems, this means constructing simple object models and writing programs to
implement and process them. This tutorial gives the fundamentals to tackle these tasks.

14. SUBJECT TERMS
Computer-aided design
Computer-aided software engineering
Database administrator
Database management system

Geographic information system
Object identifier
Object oriented

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

126

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Destroy this report when no longer needed. Do not return it to the originator.

